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Abstract

Last few years have witnessed significant enhancement of thermoelectric figure of
merit of lead telluride (PbTe) via nanostructures. Despite the experimental progress,
current understanding of the electron transport in PbTe is based on either band
structure simulated using first-principles in combination with constant relaxation time
approximation or empirical models, both requiring adjustable parameters obtained
by fitting experimental data.

This thesis aims to compute thermoelectric properties of PbTe all from first-
principles. We start by discussing the formalism based on Boltzmann transport equa-
tion to calculate the electron transport properties in PbTe using first principles and
identify the importance to calculate electron-phonon interaction accurately. We then
discuss the challenges in studying electron-phonon interaction in semiconductors us-
ing first-principles and introduce electron-phonon Wannier interpolation which allows
us to calculate the strength of electron-phonon coupling on a very fine mesh. In polar
materials like PbTe, the Fröhlich interaction due to long-range dipole field of longi-
tudinal optical phonons contributes to the electron-phonon coupling as well. As the
long-range nature of the dipole field makes the standard Wannier interpolation fail,
we have discussed the detailed procedures for correction. Next, we study the screen-
ing effect of free carriers on electron transport by modulating the polar scattering.
These considerations enabled us to report parameter-free first-principles calculation
of electron and phonon transport in PbTe, including mode-by-mode electron-phonon
scattering, leading to detailed information on electron mean free paths and the cu-
mulative contributions by electrons and phonons with different mean free paths to
thermoelectric transport properties in PbTe. Such information will help to rationalize
the use and optimization of nanosctructures to achieve high thermoelectric figure of
merit.

Thesis Supervisor: Gang Chen
Title: Carl Richard Soderberg Professor of Power Engineering
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Chapter 1

Introduction

Heat and electricity are two forms of energy both playing essential roles in our life.

Electricity is the phenomena regarding the flow of charge. It is controllable, versatile

and energizes all kinds of equipment. Heat, on the other side, is the process regarding

the flow of thermal energy. It originates from the stochastic motion of atoms mea-

sured by temperature thus can be found everywhere. The demand for electricity stim-

ulates several thermal-to-electrical energy conversion technologies, such as thermion-

ics, thermoelectrics, and thermophotovoltaics. The thermionics/thermophotovoltaics

involve spontaneous emission of electrons/photons such that they both require a high-

temperature heat source. In contrast, thermoelectric devices can work at various

temperature ranges. As a result, thermoelectric devices are considered as potential

candidates to convert waste heat into useful electricity. To realize such applications,

a comprehensive understanding of the physical process happening inside the thermo-

electric devices is crucial. In solid-state thermoelectric materials, electricity is carried

by either electrons or holes while heat is carried by energy carriers including elec-

trons, holes, phonons, magnons. The essences of thermoelectric effects are transport

phenomena of those carriers. The study of the transport process is indeed a study of

the interplay of the charge and heat carriers.

A typical thermoelectric device composes of an n-doped and a p-doped semicon-

ductor “leg” combined between the heat source and sink. The carriers in each leg are

driven out of equilibrium by the temperature gradient to form a flow. In n-doped
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semiconductors, electrons are thermally excited at the hot side and diffuse towards

the cooler side. An electrical potential difference is generated correspondingly. Such

phenomenon is named as Seebeck effect and the Seebeck coefficient is 𝑆 = −∆𝑉/∆𝑇 .

Meanwhile, phonons are migrating from the heat source towards sink. During the

nonequilibrium transport process, the electrons/holes are charge and heat carriers,

and phonons are heat carriers. From a thermodynamics point of view, to maximize

the efficiency of thermoelectric power generator, we want the work — electrical power

to be maximized, and less heat dumped into the heat sink. In other words, higher

electrical conductivity, larger Seebeck coefficient and lower thermal conductivity at

the same time are desired.

1.1 Motivations for nanostructuring the thermoelec-

tric materials

In 1993, L. D. Hicks and M. S. Dresselhaus pointed out in two pioneering papers[28][29]

that a quantum-well structure and one-dimensional conductor can significantly in-

crease the figure of merit 𝑧𝑇 , a dimensionless quantity that measures the thermo-

electric performance of the material. Essentially, in low-dimension thermoelectric

materials, the density of states near the conduction/valence band edge are much

higher than their three-dimensional bulk correspondent[13]. These findings inspired

people to think of controlling materials at nanoscale and brought profound changes to

the thermoelectric community. From the 1940s to 1990s, the maximum 𝑧𝑇 was only

slowly increasing over time from about 0.1 to about 1. After 1993 when the idea of

nanostructuring was proposed, the 𝑧𝑇 value has been increasing with time, eventually

above 2.5[27]. Past works have also successfully increased the thermoelectric efficiency

by reducing the phonon thermal conductivity. In silicon, for example, the electron

mean free paths from first-principles calculation are around tens of nanometers[58],

while phonons have mean free paths up to a few microns[14]. As a result, nanos-

tructures with grain sizes between the electron and phonon mean free path strongly

16



scatter phonons and reduce thermal conductivity dramatically yet have minimal ef-

fects on the electrical transport[58]. Such kind of enhancement of thermoelectric

performance has also been observed in the experiment for nanocrystalline silicon[52].

Compared with low-dimensional nanostructures, the bulk nanostructuring approach

might be applied in more general conditions[33].

The first-principles calculation scheme much facilitated the understanding of phonon

transport and the phonon thermal conductivity in nanostructures. In such scheme,

the lattice dynamics is obtained by either supercell approach (real space) or density

functional perturbation approach (reciprocal space). By solving the linearized phonon

Boltzmann transport equation either iteratively[37] or adopting relaxation time ap-

proximation, the behavior of each phonon mode can be resolved. The ab initio calcu-

lation of intrinsic phonon transport shows excellent agreement with experiment[71].

With the detailed information of phonon such as phonon mean free paths, experimen-

talists know what the expected grain size is that the phonon are much more efficiently

scattered. However, this is only one side of the story. To avoid any deterioration of

electron transport due to the nanostructures, the information on electron dynamics

is needed. Surprisingly, a fully first-principles calculation for electron transport with

a similar level of details for phonons is rarely reported. This motives us to find an

accurate approach to calculate the electron transport properties with mode-by-mode

resolution.

Several groups reported high figure of merit in PbTe through different nanostruc-

turing approaches [78][6][55][56][77]. One beneficial feature of PbTe is its low intrinsic

thermal conductivity due to the strong anharmonicity[12][35][70]. For PbTe, the ther-

mal transport has also been examined from the first principles yielding that phonons

with mean free paths smaller than 10 nm contribute the majority of the thermal

conductivity. This implies that to reduce the thermal conductivity, the grain sizes

should be in the order of magnitude of 10 nm. Biswas et al. proposed a “panoscopic”

approach that mesoscale grain boundaries (100 — 103 nm) can scatter phonons with

different mean free paths. As a result, they claim that the maximum reduction of

the thermal conductivity is achieved. Meanwhile, the electrical transport properties
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are not compromised. Particularly, the Seebeck coefficient slightly increases. A phe-

nomenological model by Martin has attribute it to interface barrier scattering[46]: the

interface barrier that impedes low-energy electron conduction between grains leads

to enhanced Seebeck coefficient. Due to the lack of intrinsic electron mean free path

calculation, such model is yet to be justified. To understand the origin of the out-

standing performance of nanostructured PbTe, we believe it is necessary to carry out

the first-principles calculation of electron transport properties.

1.2 Electron transport properties of interest in ther-

moelectric materials

The maximum efficiency of a thermoelectric device is defined by,

𝜂max =
𝑇𝐻 − 𝑇𝐶
𝑇𝐶

√
1 + 𝑍𝑇 − 1√

1 + 𝑍𝑇 + 𝑇𝐶

𝑇𝐻

, (1.1)

where 𝑇𝐻 and 𝑇𝐶 are the absolute temperatures of hot side and cold side, and 𝑇

is the average temperature defined by (𝑇𝐻 + 𝑇𝐶)/2. The larger the temperature

difference between the hot side and cold side and the higher the average figure of

merit 𝑍𝑇 , the higher the efficiency of the thermoelectric devices is. The figure of

merit at temperature 𝑇 is only related to material properties as,

𝑧𝑇 =
𝜎𝑆2𝑇

𝜅
(1.2)

where 𝜎 is the electrical conductivity, 𝑆 is the Seebeck coefficient, 𝜅 is the thermal

conductivity consisting the contribution from electrons (𝜅𝑒), ambipolar diffusion (𝜅𝑏𝑝)

and phonons (𝜅𝑝ℎ), and 𝑇 is the temperature. In the following, the microscopic

description of these quantities is shown.
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1.2.1 Linearized Boltzmann transport equation for electrons

We start the derivation by writing down the Boltzmann transport equation for elec-

trons,
𝜕𝑓𝑛k
𝜕𝑡

+ v𝑛k · ∇r𝑓𝑛k + F𝑛k · ∇p𝑓𝑛k =
d𝑓𝑛k
d𝑡

⃒⃒⃒⃒
coll
, (1.3)

where 𝑓𝑛k is the distribution function of the electron with band index 𝑛 and momen-

tum 𝑘. The force acted by electric field is F𝑛k = 𝑞E where 𝑞 = −𝑒 for electrons and

𝑞 = +𝑒 for holes. To simplify Eq 1.3, we make following approximations:

∙ The applied electrical field and temperature gradient are weak enough that the

distribution function is slightly deviated from equilibrium. Also, the character-

istic time scale of the variation of the distribution function is slow, such that

the term 𝜕𝑓𝑛k/𝜕𝑡 ≈ 0.

∙ The existence of the external electrical field and temperature gradient only

lead to small deviation of the distribution function from its equilibrium state.

Electron is Fermion obeying Fermi-Dirac distribution at equilibrium as 𝑓 0
𝑛k =

1/(exp((𝜀𝑛k − 𝜇)/𝑘𝐵𝑇 ) + 1), where 𝜇 is the chemical potential. When out of

equilibrium, the gradient of the distribution function is determined by the equi-

librium distribution via, ∇r𝑓𝑛k ≈ ∇r𝑓
0
𝑛k and ∇p𝑓𝑛k ≈ ∇p𝑓

0
𝑛k = ∇p𝜀𝑛k

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k
=

v𝑛k
𝜕𝑓0

𝑛k

𝜕𝜀𝑛k
.

∙ The form of the collision term (d𝑓𝑛k/d𝑡)|coll depends on the type of interaction

involved. However, we can define a characteristic time 𝜏𝑛k to estimate the

collision term as −𝑓0
𝑛k−𝑓𝑛k

𝜏𝑛k
. This is known to be relaxation time approximation.

With these approximations, the Eq. 1.3 writes,

v𝑛k ·
(︂
∇r𝑓

0
𝑛k + 𝑞E

𝜕𝑓 0
𝑛k

𝜕𝜀𝑛k

)︂
= −𝑓

0
𝑛k − 𝑓𝑛k
𝜏𝑛k

. (1.4)

Taking the advantage of the form of Fermi-Dirac distribution, we have,

∇r𝑓
0
𝑛k = −𝜕𝑓

0
𝑛k

𝜕𝜀𝑛k

(︂
∇r𝜇−∇r𝜀𝑛k +

𝜀𝑛k − 𝜇

𝑇
∇r𝑇

)︂
. (1.5)
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Here, we always the choose the conduction band minimum 𝐸𝑐 as the energy reference

for electrons[8]. Assuming the band structure is not changed when the carrier concen-

tration is changed (rigid band approximation), the electron energy is only depending

the band index and wavevector thus ∇r𝜀𝑛k = 0. The gradient of 𝐸𝑐 is also the gradient

of electrostatic potential energy. As a result, we realize that 𝑞E = −𝑞∇r𝜑 = −∇r𝐸𝑐.

Note that the chemical potential 𝜇 is also defined with respect to the conduction

band minimum. The electrochemical potential is the sum of chemical potential and

electrostatic potential as, Φ = 𝜇+ 𝑞𝜑 = 𝜇+ 𝐸𝑐. By plugging Eq.1.5 into Eq.1.4, the

Boltzmann transport equation becomes,

v𝑛k ·
[︁
−∇r(𝜇+ 𝑞𝜑) − 𝜀𝑛k − 𝜇

𝑇
∇r𝑇

]︁𝜕𝑓 0
𝑛k

𝜕𝜀𝑛k
= −𝑓

0
𝑛k − 𝑓𝑛k
𝜏𝑛k

. (1.6)

Reorganizing this equation, we obtain the nonequilibrium distribution function,

𝑓𝑛k = 𝑓 0
𝑛k − v𝑛k𝜏𝑛k

[︁
−∇rΦ − 𝜀𝑛k − 𝜇

𝑇
∇r𝑇

]︁
. (1.7)

1.2.2 Electron transport properties and electron mean free

paths

The electrical current is defined by the charge carried by all electron states per area

per unit time,

J𝑐 =
1

𝑁Ω

∑︁
𝑛k

𝑞v𝑛k𝑓𝑛k, (1.8)

where 𝑁 is the total number of the electron states 𝑛k and Ω the volume of the unit

cell. The deviation of the distribution function 𝑓𝑛k − 𝑓 0
𝑛k is an asymmetric function

of wavevector k and the equilibrium distribution 𝑓 0
𝑛k is a symmetric function of k. As

a result, the electrical current is only determined by the deviation of the distribution

function,

J𝑐 = − 1

𝑁Ω

∑︁
𝑛k

𝑞v𝑛k

[︁
−∇rΦ − 𝜀𝑛k − 𝜇

𝑇
∇r𝑇

]︁
(1.9)
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Similarly, the heat flux — the energy flow carried by electrons per area per unit time

writes,

J = − 1

𝑁Ω

∑︁
𝑛k

(𝜀𝑛k − 𝜇)v𝑛k

[︁
−∇rΦ − 𝜀𝑛k − 𝜇

𝑇
∇r𝑇

]︁
(1.10)

The charge flux and the heat flux are correlated with the temperature gradient

and electrochemical potential gradient by the transport coefficients,

J𝑐 = −L11 ·
(︂

1

𝑞
∇rΦ

)︂
− L12 · ∇r𝑇. (1.11)

J = −L21 ·
(︂

1

𝑞
∇rΦ

)︂
− L22 · ∇r𝑇. (1.12)

The first term in Eq. 1.11 describes the electrical current due to the electrochemical

potential gradient and the coefficient L11 is the electrical conductivity tensor. By

matching the terms in Eq.1.9 and Eq.1.11, we find that,

𝜎𝛼𝛽 = 𝐿11
𝛼𝛽 = − 𝑞2

Ω𝑁

∑︁
𝑛k

𝑣𝑛k𝛼𝑣𝑛k𝛽𝜏𝑛k
𝜕𝑓 0

𝑛k

𝜕𝜀𝑛k
, (1.13)

where 𝛼 and 𝛽 are certain directions in Cartesian coordinates. By changing the condi-

tion for the summation from {𝑛k} to {𝑛k, |v𝑛k|𝜏𝑛k < 𝜆}, we obtain the contribution

to the conductivity of electrons with mean free paths up to a given value 𝜆,

𝜎𝛼𝛽(𝜆) = 𝐿11
𝛼𝛽 = − 𝑞2

Ω𝑁

∑︁
𝑙𝑛k≤𝜆

𝑣𝑛k𝛼𝑣𝑛k𝛽𝜏𝑛k
𝜕𝑓 0

𝑛k

𝜕𝜀𝑛k
, (1.14)

where the mean free path of electron 𝑛k is 𝑙𝑛k = |v𝑛k𝜏𝑛k|. Note that we can break

the summation into the summation over electron states and hole states separately,

and obtain electron conductivity 𝜎𝑒
𝛼𝛽 and hole conductivity 𝜎ℎ

𝛼𝛽 by,

𝜎𝑒
𝛼𝛽 = − 𝑞2

Ω𝑁

∑︁
𝜀𝑛k≥0

𝑣𝑛k𝛼𝑣𝑛k𝛽𝜏𝑛k
𝜕𝑓 0

𝑛k

𝜕𝜀𝑛k
, (1.15)

𝜎ℎ
𝛼𝛽 = − 𝑞2

Ω𝑁

∑︁
𝜀𝑛k≤−𝐸𝑔

𝑣𝑛k𝛼𝑣𝑛k𝛽𝜏𝑛k
𝜕𝑓 0

𝑛k

𝜕𝜀𝑛k
, (1.16)
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where 𝐸𝑔 is the band gap energy. The electron mobility is 𝜇𝑒
𝛼𝛽 = 𝜎𝑒

𝛼𝛽/𝑛𝑒 and the

hole mobility is 𝜇ℎ
𝛼𝛽 = 𝜎ℎ

𝛼𝛽/𝑝𝑒, where 𝑛 and 𝑝 are electron concentration and hole

concentration, respectively. The total mobility is defined by,

𝜇𝛼𝛽 =
𝜎𝛼𝛽

(𝑛+ 𝑝)𝑒
=
𝑛𝜇𝑒

𝛼𝛽 + 𝑝𝜇ℎ
𝛼𝛽

𝑛+ 𝑝
. (1.17)

The second term in Eq. 1.11 represents the contribution to the electrical current from

the temperature gradient and the tensor L12 writes,

𝐿12
𝛼𝛽 = − 𝑞

Ω𝑇𝑁

∑︁
𝑛k

𝑣𝑛k𝛼𝑣𝑛k𝛽𝜏𝑛k (𝜀𝑛k − 𝜇)
𝜕𝑓 0

𝑛k

𝜕𝜀𝑛k
. (1.18)

The Seebeck coefficient tensor is defined by,

S = L−111 L12. (1.19)

In particular, in isotropic materials, the Seebeck coefficient reads,

𝑆𝛼 =
𝐿12
𝛼

𝐿11
𝛼

=
1

𝑞𝑇

∑︀
𝑛k 𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k (𝜀𝑛k − 𝜇)

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k∑︀
𝑛k 𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k

.

(1.20)

Note that the Seebeck coefficient is not an additive quantity thus the accumulated

Seebeck coefficient is ill-defined. Nevertheless, we can still define a truncated Seebeck

coefficient by changing the condition for the summation both in the numerator and

denominator from {𝑛k} to {𝑛k, |v𝑛k|𝜏𝑛k < 𝜆}. Effectively, we are able to calculate

the contribution to the Seebeck coefficient of electrons with mean free paths up to a

given value 𝜆 as,

𝑆𝛼(𝜆) =
1

𝑞𝑇

∑︀
𝑙𝑛k≤𝜆 𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k (𝜀𝑛k − 𝜇)

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k∑︀
𝑙𝑛k≤𝜆 𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k

. (1.21)

The truncated power factor is defined in the same fashion by setting a maximum
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mean free path for all summations. The electron and hole Seebeck coefficient are

written as

𝑆𝑒
𝛼 =

1

𝑞𝑇

∑︀
𝜀𝑛k≥0 𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k (𝜀𝑛k − 𝜇)

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k∑︀
𝜀𝑛k≥0 𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k

𝜕𝑓0
𝑛k

𝜕𝜀𝑛k

. (1.22)

𝑆ℎ
𝛼 =

1

𝑞𝑇

∑︀
𝜀𝑛k≤−𝐸𝑔

𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k (𝜀𝑛k − 𝜇)
𝜕𝑓0

𝑛k

𝜕𝜀𝑛k∑︀
𝜀𝑛k≤−𝐸𝑔

𝑣𝑛k𝛼𝑣𝑛k𝛼𝜏𝑛k
𝜕𝑓0

𝑛k

𝜕𝜀𝑛k

. (1.23)

The first term in Eq. 1.12 corresponds to the heat flow due to the electrochemical

potential gradient and the coefficient L21 = 𝑇 L12. The second term in Eq. 1.12

describes the diffusion of electron under a temperature gradient, where the tensor L22

is defined as,

𝐿22
𝛼𝛽 = − 1

Ω𝑇𝑁

∑︁
𝑛k

𝑣𝑛k𝛼𝑣𝑛k𝛽𝜏𝑛k (𝜀𝑛k − 𝜇)2
𝜕𝑓 0

𝑛k

𝜕𝜀𝑛k
. (1.24)

Denote the electrochemical potential as 𝜙 = Φ/𝑞 and the electrical current by elec-

trons and holes are,

J𝑒
𝑐 = −𝜎𝑒 · ∇r𝜙− 𝜎𝑒 · S𝑒 · ∇r𝑇, (1.25)

Jℎ
𝑐 = −𝜎ℎ · ∇r𝜙− 𝜎ℎ · Sℎ · ∇r𝑇, (1.26)

and separated energy flux by electrons and holes are,

J𝑒 = −𝑇𝜎𝑒 · S𝑒 · ∇r𝜙− L𝑒
22 · ∇r𝑇

= 𝑇𝜎𝑒 · S𝑒 · (𝜎𝑒)−1 · J𝑒
𝑐 −

[︀
L𝑒

21(L
𝑒
11)
−1L𝑒

12 + L𝑒
22

]︀
· ∇r𝑇,

(1.27)

Jℎ = −𝑇𝜎ℎ · Sℎ · ∇r𝜙− Lℎ
22 · ∇r𝑇

= 𝑇𝜎ℎ · Sℎ · (𝜎ℎ)−1 · Jℎ
𝑐 −

[︀
Lℎ

21(L
ℎ
11)
−1
Lℎ

12 + Lℎ
22

]︀
· ∇r𝑇.

(1.28)

We then know the electronic thermal conductivity tensor 𝜅𝑒 is given by,

𝜅𝑒 = L22 − L21L
−1
11 L12. (1.29)

The electrical thermal conductivity defined by Eq. 1.29 does not include the heat con-

duction due to ambipolar diffusion. At high temperatures, electrons can be thermally

excited from valence band to the conduction band. Such process absorbs heat and its
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inverse process releases heat. The temperature gradient in thermoelectric materials

leads to spatial dependent electron-hole pair generation/recombination processes. In

this fashion, the heat can be migrated from the hot side to the cold side even though

net electrical current is zero. Let the net current to be zero J𝑐 = J𝑒
𝑐 +Jℎ

𝑐 = 0 and plug

it in Eq. 1.25 and Eq. 1.26. We have ∇r𝜙 = −(𝜎𝑒 + 𝜎ℎ)−1 · (𝜎𝑒 · S𝑒 + 𝜎ℎ · Sℎ) · ∇r𝑇 .

Then, we rewrite the electrical current as,

J𝑒
𝑐 = −J𝑒

ℎ =
[︁
𝜎𝑒 · (𝜎𝑒 + 𝜎ℎ)−1 · 𝜎ℎ · Sℎ − 𝜎ℎ · (𝜎𝑒 + 𝜎ℎ)−1 · 𝜎𝑒 · S𝑒

]︁
· ∇r𝑇. (1.30)

Plug the electrical current into the heat flux equation in Eq. 1.27 and Eq. 1.28,

J𝑐 = 𝑇𝜎𝑒 · S𝑒 · (𝜎𝑒)−1 · J𝑒
𝑐 − 𝜅𝑒

𝑒 · ∇r𝑇,

Jℎ = 𝑇𝜎ℎ · Sℎ · (𝜎ℎ)−1 · Jℎ
𝑐 − 𝜅ℎ

𝑒 · ∇r𝑇,

J = J𝑒 + Jℎ

= −

[︃
− L𝑒

21L
−1
11 L

ℎ
12 + L𝑒

21𝜎
−1
𝑒 𝜎ℎL

−1
11 L

𝑒
12 − Lℎ

21L
−1
11 L

𝑒
12 + Lℎ

21𝜎
−1
ℎ 𝜎𝑒L

−1
11 L

ℎ
12

]︃
· ∇r𝑇

− 𝜅𝑒
𝑒 · ∇r𝑇 − 𝜅ℎ

𝑒 · ∇r𝑇.

(1.31)

This is equivalent to cases of the heat conduction by electrons and holes in an open-

circuit thermoelectric leg subject to a temperature gradient where there is zero current

but finite voltage difference and heat flux. The first term is the bipolar thermal

conductivity tensor,

𝜅𝑏𝑝 = (L𝑒
21𝜎

−1
𝑒 𝜎ℎ − Lℎ

21)L
−1
11 L

𝑒
12 + (Lℎ

21𝜎
−1
ℎ 𝜎𝑒 − L𝑒

21)L
−1
11 L

ℎ
12. (1.32)

In isotropic materials, it reduces to,

𝜅𝑏𝑝𝛼 =
𝜎𝑒
𝛼𝜎

ℎ
𝛼

𝜎𝑒
𝛼 + 𝜎ℎ

𝛼

(︀
𝑆𝑒
𝛼 − 𝑆ℎ

𝛼

)︀2
𝑇. (1.33)
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1.3 Electron scattering rate

In the previous section, we have derived the linearized Boltzmann transport equation

with relaxation time approximation,

d𝑓𝑛k
d𝑡

⃒⃒⃒⃒
coll

= −𝑓𝑛k − 𝑓 0
𝑛k

𝜏𝑛k
. (1.34)

Since generally the collision term d𝑓𝑛k

d𝑡

⃒⃒
coll involves all distribution 𝑓𝑛k′ , such approx-

imation requires justification, especially in polar materials where the optical phonon

energy is relatively higher. A specific formalism to solve the Boltzmann transport

equation beyond relaxation time approximation is the iterative solver, which will be

discussed in Chapter 3. Nevertheless, the lifetime 𝜏𝑛k is generally a good physical

quantity to describe electron dynamics. As electron is constantly scattered through

various scattering mechanisms, it is usually assumed that the total electron scattering

rate is the sum of all individual types of scattering, known as the Matthiessen’s rule,

1

𝜏𝑛k
=
∑︁
𝑖

1

𝜏𝑛k,𝑖
. (1.35)

In the following part, we will present typical scattering mechanisms for semiconduc-

tors.

Interaction with acoustic phonons . Acoustic phonons are believed to be primarily

responsible for the scattering of electrons in non-polar materials. In 1950, Bardeen

and Shockley proposed the idea of deformation potential to explain the mobility in

solids[3]. In their picture, the energy bands are gradually shifted resulting from the

local deformation of the lattice due to phonon. Based on the Fermi’s Golden Rule,

the scattering rate is,

𝑆(𝑛k,𝑚k′) =
2𝜋

ℎ̄
|⟨𝑛k|𝑈 |𝑚k′⟩|2 𝛿(𝜀𝑚k′ − 𝜀𝑛k − ∆𝜀)𝑓𝑛k(1 − 𝑓𝑚k′), (1.36)

where ∆𝜀 is the energy transfer through the scattering event and 𝑈 is the perturbed
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potential. The perturbed potential due to deformation of an acoustic phonon writes,

𝑈(𝑥, 𝑡) = 𝐷𝐴
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
, (1.37)

where 𝐷𝐴 is the deformation potential constant, and 𝑢 is the displacement of the ion.

The acoustic wave is usually described by,

𝑢 = 𝐴𝑘𝑒
𝑖(𝑘𝑥−𝜔𝑡) + 𝑐.𝑐. (1.38)

The scattering rate due to acoustic deformation phonon scattering is,

1

𝜏𝑛k,ADP

=
∑︁
𝑚k′

𝑆(𝑛k,𝑚k′) (1.39)

In a parabolic band model, the scattering rate reads,

1

𝜏𝑛k,ADP

=
𝐷2

𝐴𝑘𝐵𝑇 (2𝑚*𝑑)
3/2𝜀

1/2
𝑛k

2𝜋ℎ̄4𝐶𝑙

, (1.40)

where 𝐶𝑙 is the average longitudinal elastic modulus and 𝑚*𝑑 is the single-valley

density-of-state effective mass.

Interaction with non-polar optical phonons . For optical phonons, the perturbed

potential is due to the opposite displacement (out of phase) of the ions. The lattice

spacing is directly related to the displacement, which leads to the perturbed potential,

𝑈(𝑥, 𝑡) = 𝐷𝑂𝑢(𝑥, 𝑡) (1.41)

For simplicity, we can neglect the variance of the optical phonon. If the optical phonon

frequency is denoted by 𝜔𝑜, the scattering rate due to non-polar optical deformation

potential scattering is,

1

𝜏𝑛k,ODP

=
𝜋𝐷2

𝑂𝑘𝐵𝑇 (2𝑚*𝑑)
3/2𝜀

1/2
𝑛k

2ℎ̄2𝑎2𝜌(ℎ̄𝜔𝑜)2
(1.42)

where 𝑎 is the lattice constant and 𝜌 is the density.
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Interaction with polar optical phonons . For a material with more than two kinds

of ions, the charge associated with each ion is different. The optical phonon not only

deforms the lattice but creates polarization. For a long-wavelength optical phonon,

in different unit cells, the ion displacements as well as the dipoles are similar, which

means that the polarization can be significant. In another word, the interaction

between the electron and the long-wavelength polar optical modes can be significant.

This is known as the polarization scattering or polar scattering. In gallium arsenide

(GaAs), for example, the major scattering mechanism for electrons is believed to be

polar scattering.

For a unit cell with ions associated with different charges, the relative displace-

ments of the positively charged ion to the negatively charged ion is,

1

𝑄

(︃∑︁
𝛼

𝑒𝛼∆𝑅𝛼 −
∑︁
𝛽

|𝑒𝛽|∆𝑅𝛽

)︃

=
1√
𝑁

(︂
ℎ̄

2𝑀𝜈q𝜔𝜈q

)︂1/2

×
[︀
𝑢𝜈q𝑎

+
𝜈q𝑒

𝑖q·R − 𝑢*𝜈q𝑎𝜈q𝑒
−𝑖q·R]︀ , (1.43)

where R is the lattice site, 𝑒𝛼/𝛽 is the number of charge associated with positively/negatively

charged ion and 𝑄 =
∑︀

𝛼 𝑒𝛼 =
∑︀

𝛽 𝑒𝛽. The displacement due to phonon mode 𝜈q

satisfies,

𝑑𝜈q =
u𝜈q

𝑀
1/2
𝜈q

=
1

𝑄

[︃∑︁
𝛼

𝑒𝛼e𝜈q𝛼

𝑀
1/2
𝛼

−
∑︁
𝛽

|𝑒𝛽|e𝜈q𝛽
𝑀

1/2
𝛽

]︃
,

e𝜈q

𝑀
1/2
𝜈q

=
1

𝑛

𝑛∑︁
𝑖

e𝜈q𝑖

𝑀
1/2
𝑖

,

(1.44)

where 𝑀𝑖 is the mass of 𝑖th ion, e𝜈q is the eigenvector of the phonon mode 𝜈q and

e𝜈q𝑖 is the eigenvector of 𝑖th ion. The electrical field due to the relative displacement

is,

𝐸𝜈q = −4𝜋𝑒*𝜈qd𝜈q ·
q

|q|
, (1.45)

where the effective charge is defined by 𝑒*𝜈q = 𝑀
1/2
𝜈q

√︂
𝜔2
𝑜

4𝜋

(︁
1
𝜖∞

− 1
𝜖0

)︁
. The polar scat-
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+Z-Z

Unperturbed	potential	 field	V(r) Perturbed	potential	 field	V’(r) Perturbation	ΔV(r)	=	V’(r)- V(r):	
a	long-range	dipole	field

Figure 1-1: The origin of the long-range dipole field due to LO phonon in polar
material consisting two atoms per unit cell.

tering rate is written as[41],

1

𝜏𝑛k,𝑃𝑂

=
𝑒2𝜔𝑜(𝜖∞

−1 − 𝜖0
−1)

ℎ
√︀

2𝜀𝑛k/𝑚*𝑑

[︃
𝑁𝑜sinh−1

(︂
𝜀𝑛k
ℎ̄𝜔𝑜

)︂1/2

+ (𝑁𝑜 + 1) sinh−1
(︂
𝜀𝑛k
ℎ̄𝜔𝑜

− 1

)︂1/2
]︃

(1.46)

where 𝑁𝑜 is the population of the longitudinal optical phonon.

1.4 A brief review of previous computational work

A full calculation of the thermoelectric transport properties using first principles is

useful because it can provide insights, such as the electro/hole mean free paths, for

experimentalists to optimize the thermoelectric performance of the materials. Such

calculation is complicated as it is involved with numerous interdependent material

parameters. Some intrinsic material parameters are difficult to extract from exper-

iments, e.g. the lifetime of electrons. Previous computational works has to adopt

certain level of assumptions to make the calculation of the transport properties.

Constant relaxation time approximation. In Eq. 1.20, the lifetime of the carrier ap-

pears in the numerator and the denominator at the same time, implying that the

Seebeck coefficient might not be sensitive to the carrier lifetime given a weak enough

dependence of lifetime on the wavevector. The electrical conductivity is closely re-

lated to the carrier lifetime. The simplest treatment is to neglect the 𝑘-dependence

of the carrier lifetime. A successful computational formalism named as BoltzTrap

developed by Madsen and Singh[43] assumes a constant relaxation time for all carri-
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ers and compute the transport properties based on the band structures from d ensity

functional theory (DFT) on a highly dense 𝑘-point mesh. It turned out to be a

good approximation for highly-doped semiconductors. For example, the Seebeck co-

efficient of PbTe from calculation agrees well with experiments for different doping

concentrations[64]. Based on results from such type of calculation, people also at-

tributed the high Seebeck coefficient and high mobility of PbTe at the same time to

the strongly corrugated shape of isoenergy surfaces[9].

The band structure calculation does not requires a lot of computation resource,

making it possible to do a high-throughput calculation for various thermoelectric

materials[24]. The disadvantage of this approach is that one has to assign a value

for the lifetime to calculate the electrical conductivity. To the best of our knowledge,

there is no report of first-principles calculation of the carrier lifetime in PbTe.

Band structures beyond DFT at zero Kelvin. Considering the fact that the band

gap rendered by DFT calculation is often underestimated, calculation beyond DFT

could potentially improves the accuracy of the BoltzTrap calculation. In addition,

the doping[18] and finite temperature could both modify the band structures thus the

band structure from zero-Kelvin DFT calculation does not seem to be plausible. Svane

et al. applied quasiparticle selt-consistent 𝐺𝑊 calculation to calculate the band gap

and effective mass and achieved good agreement with experiments[68]. Gibbs et al.

showed through ab initio molecular dynamics calculation in a supercell that the light

band at L point and heavy band at Σ point converge at 700 K, consistent with optical

measurements of the band gap. In 2014, Skelton et al. investigated the temperature

effects on the band structures by giving specific lattice constants predicted using

quasi-harmonic approximation (QHA)[65]. Although for each calculation, it is still

zero-Kelvin calculation, they were able to obtain a more accurate band structure at

finite temperatures.

Corrected k · p scheme for accurate band structures. The 𝐺𝑊 calculation of band

structures is believed to be more accurate than DFT, yet the dramatically increased

computational cost makes the computation on a fine 𝑘 mesh unachievable. In 2017,

Berland et al. proposed a corrected scheme by solving the k · p method and extrapo-
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lating the band structures from several 𝑘 points[5]. They demonstrate that not only

the band structures, but the density of states as well as dielectric constant can be

accurately extrapolated with computational cost on a sparse grid.

Fully first-principle calculation of electron transport in Si and GaAs. In 2015, Qiu et

al. carried out the fully first-principle electron transport in silicon[58]. The electron-

phonon scattering rate was calculated using electron-phonon Wannier interpolation

based on maximally localized Wannier functions and the electron mean free paths are

reported. Unlike in non-polar silicon, the polarization scattering for electron can be

significant in polar materials. In 2017, Liu et al. calculated the intrinsic electron life-

time in GaAs within the relaxation time approximation[40]. They also calculated the

electron mobility iteratively, achieving great agreements with experimental results.

In practical thermoelectric materials, the ab initio calculation of electron transport is

more complicated. For PbTe, it is known that the strong spin-orbit coupling leads to

non-parabolic band structure, which requires a fully-relativistic calculation. Also, the

screening effect of free carriers that affects the polar scattering should be considered.

1.5 Outline of the thesis

The goal of the thesis is to go beyond the constant relaxation time approximation and

calculate the electron-phonon interaction rigorously. In Chapter 1, we have briefly

reviewed previous computational efforts in calculating electrical transport properties

using ab initio method. In Chapter 2, we first compactly introduce key assumptions

in DFT. We review the density functional perturbation theory (DFPT) for the lat-

tice dynamics calculation. In Chapter 3, we introduce the electron-phonon Wannier

interpolation scheme to calculate the electron-phonon coupling matrix on a very fine

grid. In Chapter 4, we present the ab initio electron mean free paths, electron trans-

port properties and phonon transport properties in 𝑛-type PbTe. In Chapter 5, we

summarize the findings and wisdom provided by calculation, and identify the future

direction.
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Chapter 2

Lattice dynamics from first principles

The density functional theory provides a parameter-free way towards the ground

states of a electronic system. Phonon is considered as a perturbation to the ground

states due to atom displacement. The 2𝑛+1 theorem states that the (2𝑛+1)𝑡ℎ deriva-

tive of the eigenvalue of a Hamiltonian can be calculated with only the knowledge of

the variance in the eigenfunctions up to order 𝑛[30]. In the sprit of 2𝑛 + 1 theorem,

the density functional perturbation theory (DFPT) was proposed by Baroni[4] and

Gonze[22] to calculate the phonon properties (first order) only requiring zeroth-order

wavefunctions. In DFPT, the responses to perturbation is obtained by computing

the system subject to external potential within the DFT formalism.

2.1 Density functional theory

Due to large mass difference between the ion and the electron, the Born-Oppenheimer

approximation is considered to be a reasonable approximation to simplify the Schrödinger

equation. Whenever the ion moves, the electron responds fast enough such that the

ion is considered as fixed. This approximation allows us to construct the wavefunc-

tion as Φ = 𝜑electron × 𝜑nuclei. The correlated nature of electrons in solids makes it

impossible to solve the many-body Schrödinger equation directly. A certain level of

approximation needs to be adopted to obtain the electron eigenstates in the solids.

The Hohenberg-Kohn theorem provides a new perspective to construct the equation
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of motion for electrons in solids:

∙ Theorem 1 The external potential and the total energy is a unique functional

of electron density 𝜌(r).

∙ Theorem 2 The ground state energy can be obtained variationally and the

density that minimizes the total energy is the exact ground state density.

For a very long time, scientists had struggled to find that functional of density. Even-

tually, some approximated form of the functional is shown to be able to simplify the

many-body Schrödinger equation to a set of one-electron equations and the reproduce

the correct material properties.

2.1.1 Hartree approximation

The Hartree approximation states that the ansatz for the many-body electron wave-

function may write as,

Φ(r1, r2, . . . , r𝑁) = 𝜑(r1)𝜑(r2) · · ·𝜑(r𝑁). (2.1)

Each particle is regarded as independent and interacts with each other through the

mean-field Coulomb potential. The corresponding Schrödinger equation is,

[︂
− ℎ̄2

2𝑚
∇2 + 𝑉 (r)

]︂
𝜑𝑖(r) = 𝜀𝑖𝜑𝑖(r), (2.2)

where 𝑚 is the electron mass. The potential has two parts, the electron-nucleus

interaction and electron-electron interaction, both in the form of Coulomb potential,

𝑉 (r) = −𝑍𝑒2
∑︁
R

1

4𝜋𝜖0|r−R|
− 𝑒2

∫︁
dr′𝜌(r′)

1

4𝜋𝜖0|r− r′|
, (2.3)

where 𝑍 is the charge of the ion and 𝜖0 is the permittivity of free space.
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2.1.2 Hartree-Fock approximation

The Hartree approximation fails to capture the exchange interaction. The exchange

interaction is due to the Pauli exclusion principle, which leads to antisymmetry when

exchanging particle,

Φ(x1,x2, . . . ,x𝑖, . . . ,x𝑗, . . . ,x𝑁) = −Φ(x1,x2, . . . ,x𝑗, . . . ,x𝑖, . . . ,x𝑁), (2.4)

where x𝑖 is the coordinate that includes position and spin. To satisfy such permutation

symmetry, one generalized form of the solution to the wavefunction is the Slater

determinant,

Φ(x1,x2, . . . ,x𝑁) =
1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝜑1(x1) 𝜑2(x1) . . . 𝜑𝑁(x1)

𝜑1(x2) 𝜑2(x2) . . . 𝜑𝑁(x2)
...

... . . . ...

𝜑1(x𝑁) 𝜑2(x𝑁) . . . 𝜑𝑁(x𝑁)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ . (2.5)

This leads the following Schrödinger equation, also know as the Hartree-Fock equa-

tion, (︃
− ℎ̄2

2𝑚
∇2 − 𝑍𝑒2

∑︁
R

1

4𝜋𝜖0|r−R|
−
∑︁
𝑗

𝑒2
∫︁

dr′
|𝜑𝑗(r

′)|2

4𝜋𝜖0|r− r′|

)︃
𝜑𝑖(r)

−
∑︁
𝑗

𝛿𝑠𝑖,𝑠𝑗𝑒
2

∫︁
dr′

𝜑*𝑗(r
′)𝜑𝑖(r

′)

4𝜋𝜖0|r− r′|
𝜑𝑖(r) = 𝜀𝑖𝜑𝑖(r)

(2.6)

where 𝜑*𝑗(r′) is the complex conjugate of 𝜑𝑗(r
′) and 𝑠𝑖 is the spin of the electron. The

last term in Eq. 2.6 describes the exchange interaction. However, the exchange term

is a non-local operator for 𝜑𝑖 making the Hartree-Fock equation difficult to solve in

big systems such as periodic solids.
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2.1.3 Kohn-Sham equation, local density approximation and

pseudopotentials

The Hartree-Fock equation include the exchange interaction, yet the correlation in-

teraction is missed, which describes the influence on the movement of one electron

by the presence of all other electrons. The key to resolve the issue is to modified the

form of the effective potential. In 1965, Walter Kohn and Lu Jeu Sham[32] proposed

a new way to include exchange-correlation interaction,

[︂
− ℎ̄2

2𝑚
∇2 + 𝑉eff(r)

]︂
𝜑𝑖(r = 𝜀𝑖𝜑𝑖(r). (2.7)

The effective potential reads,

𝑉eff(r) = 𝑉ext(r) + 𝑒2
∫︁

dr′
𝜌(r′)

4𝜋𝜖0|r− r′|
+
𝛿𝐸xc[𝜌]

𝛿𝜌(r)
, (2.8)

where charge density 𝜌(r) =
∑︀

𝑖 |𝜑𝑖(r)|2 and the last term is the exchange-correlation

potential. Later, the local-density approximation is proposed to provide a way to con-

struct the exchange-correlation potential. In spin-unpolarized system, the exchange-

correlation energy writes,

𝐸xc[𝜌] =

∫︁
dr𝜌(r)𝜀xc(𝜌), (2.9)

where 𝜀xc the exchange-correlation energy per particle of a homogeneous electron gas

with charge density 𝜌(r). The potential due to core valence electrons is included in

𝑉ext(r). The core is usually regarded as independent of the environment and can

be substituted by a pseudopotential. The pseudopotential replaces the Coulomb

electron-ionic core interactions and it consists long-ranged local part and short-ranged

non-local part,

𝑉𝑖 = 𝑉𝑛𝑙 + 𝑉𝑙𝑜𝑐, (2.10)

where 𝑖 represents 𝑖th ion. The long-ranged local part at a large distance to the ion

center returns to the trivial Coulomb potential. Conversely, the short-ranged non-

local part is written in terms of the sum of several angular-momentum dependent
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potentials within the LDA,

𝑉𝑙𝑜𝑐(r) =
∑︁
𝑙

𝑉𝑙(𝑟) |𝑙⟩ ⟨𝑙| . (2.11)

In practice, the non-local pseudopotentials are written as a semilocal operator,

𝑉𝑠𝑙 =
∑︁
𝑙𝑚

𝑉𝑙(𝑟)𝛿(𝑟 − 𝑟′)𝑌𝑙𝑚.(r̂)𝑌
*
𝑙𝑚(r̂′) (2.12)

where 𝑌𝑙𝑚 is the spherical harmonic function of degree 𝑙 and order 𝑚 defined in

spherical harmonics.

To be more specific, we carried out the first-principles calculation on electronic

band structure using a 6 × 6 × 6 Monkhorst-Pack[50] 𝑘-grid with the cutoff energy

of 70 Ry. We choose the norm-conserving fully relativistic pseudopotentials with

local density approximation (LDA) for exchange-correlation energy functional. The

calculation includes the spin-orbit coupling, implemented in Quantum ESPRESSO

package[16]. The lattice constant used in calculation is 6.29 Å. The band gap given by

the DFT calculation is 0.15 eV. As is known, the DFT-LDA suffers from underestimat-

ing the material’s band gap. This is because the LDA has erroneous self-interaction:

the exact exchange-correlation energy functional should cancel the self-interaction yet

LDA does not. The LDA tends to over-delocalize the occupied states, leading to a

higher energy of those states thus a smaller band gap[72]. In our case, we rigidly shift

the conduction bands to match the band gap at room temperature, which is 0.316

eV[59]. The doping is modeled with a rigid band model approximation and dopants

are assumed to be fully ionized in the whole temperature range in the calculation.

Given the number of dopants, the chemical potential is obtained by solving the charge

neutrality equation.

We would also like to address the effect of temperature on the band structure.

There are several ways to calculate the band structure considering the temperature

effect. The most straightforward way is the ab initio molecular dynamics[17]. We

adopt the temperature-dependent band gap from experiment[59] and compare the
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results with constant-band-gap calculation. We realize that the difference between

the two cases is insignificant[1]. Consequently, we apply the same lattice constant and

band gap for all calculations and the temperature effect is encoded in the distribution

functions of electrons and phonons.

2.2 Density functional perturbation theory

The density functional theory provides a way to obtain the ground state energy. Based

on linear response theory, the lattice vibration can be also studied by the density

functional theory. The density functional-perturbation theory is the ab initio theory

of lattice vibrations. Within the Born-Oppenheimer approximation, the Schrödinger

equation that describes the lattice dynamics is,

[︂
−
∑︁
𝑖

ℎ̄2

2𝑀𝑖

𝜕2

𝜕R𝑖

+ 𝐸(R)

]︂
Φion(R) = 𝜀Φion(R), (2.13)

where 𝑀𝑖 is the 𝑖th ion mass and R𝑖 is the position of its position. The 𝐸(R) is the

clamped-ion energy of the system composed of ion with fixed position and interacting

electrons. The Hamiltonian to describe such system writes (in atomic unit),

𝐻BO(R) = − ℎ̄2

2𝑚

∑︁
𝑘

𝜕2

𝜕r2𝑘
+
𝑒2

2

∑︁
𝑘 ̸=𝑗

1

|r𝑘 − r𝑗|
−
∑︁
𝑖𝑘

𝑍𝑖𝑒
2

|r𝑘 −R𝑖|
+
𝑒2

2

∑︁
𝑖 ̸=𝑙

𝑍𝑖𝑍𝑙

|R𝑖 −R𝑙|
. (2.14)

The Hessian matrix scaled by the nuclear masses is,

M =
1√︀
𝑀𝑖𝑀𝑗

𝜕2𝐸(R)

𝜕R𝑖𝜕R𝑗

. (2.15)

And the phonon frequency is the eigenvalue of the Hessian matrix by,

det

⃒⃒⃒⃒
M− 𝜔2

⃒⃒⃒⃒
= 0 (2.16)
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To obtain the force, we refer to the Hellmann-Feynman theorem which states,

𝜕𝐸𝜆

𝜕𝜆
=

⟨
Ψ𝜆

⃒⃒⃒⃒
𝜕𝐻𝜆

𝜕𝜆

⃒⃒⃒⃒
Ψ𝜆

⟩
, (2.17)

where Ψ𝜆 is the eigenfunction of the Hamiltonian and 𝜆 is a parameter. Letting the

𝜆 to be the position r, we find that the force acting on 𝑖th nucleus is determined by,

F𝑖 = −𝜕𝐸(R)

𝜕R𝑖

=

⟨
Ψ(R)

⃒⃒⃒⃒
− 𝜕𝐻BO

𝜕Ri

⃒⃒⃒⃒
Ψ(R)

⟩
. (2.18)

Then, the Hessian is represented by,

𝜕2𝐸(R)

𝜕R𝑖𝜕R𝑗

= − 𝜕F𝑖

𝜕R𝑗

. (2.19)

2.2.1 Linear response theory

The essence of linear response theory is the transfer function that correlates the

input and the output. In the case of lattice dynamics, the transfer function is the

interatomic force constant that describes the energy variance upon atom displacement.

In the realm of density functional theory, the perturbation due to atom displacement

can be represented by the charge density. Based on the Hellmann-Feynman theorem,

the first and seconder derivatives of the energy can be written as,

𝜕𝐸

𝜕𝜆𝑖
=

∫︁
𝜕𝑉𝜆(𝜌)

𝜕𝜆𝑖
𝜌𝜆(r)dr,

𝜕2𝐸

𝜕𝜆𝑖𝜕𝜆𝑗
=

∫︁
𝜕2𝑉𝜆(r)

𝜕𝜆𝑖𝜕𝜆𝑗
𝜌𝜆(r)dr +

∫︁
𝜕𝜌𝜆(r)

𝜕𝜆𝑖

𝜕𝑉𝜆(r)

𝜕𝜆𝑗
dr.

(2.20)

To calculate the force constant, the parameter 𝜆 is the position of the atom R. In the

density functional theory formalism, the effective potential is also called self-consistent

field (SCF) potential,

𝑉SCF = 𝑉ext(r) + 𝑒2
∫︁

dr′
𝜌(r′)

|r− r′|
+ 𝑣xc(r). (2.21)
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2.2.2 General form of perturbed potential

Upon the perturbation, the perturbed potential to the lowest order is,

∆𝑉SCF(r) = ∆𝑉ext(r) + 𝑒2
∫︁

dr′
∆𝜌(r′)

|r− r′|
+

d𝑣xc(𝜌)

d𝜌

⃒⃒⃒⃒
𝜌=𝜌(r)

∆𝜌(r). (2.22)

The lowest-order perturbed part of the eigenfunction is given by,

∆𝜓𝑛(r) =
∑︁
𝑚̸=𝑛

𝜓𝑚(r)
⟨𝜓𝑚|∆𝑉SCF|𝜓𝑛⟩

𝜀𝑛 − 𝜀𝑚
. (2.23)

The corresponding perturbed part of the charge density is,

∆𝜌(r) = 4

𝑁/2∑︁
𝑛=1

∑︁
𝑚 ̸=𝑛

𝜓*𝑛(r)𝜑𝑚(r)
⟨𝜓𝑚|∆𝑉SCF|𝜓𝑛⟩

𝜀𝑛 − 𝜀𝑚
. (2.24)

2.3 Phonons in polar materials

We have shown the force constant based on perturbation theory in first principles. To

study phonons distinguished by wavevector and polarization, in particular, phonon

dispersion, we need to construct the corresponding physical quantities in the recipro-

cal space. Consider the Fourier transform of Eq. 2.22,

∆𝑉SCF(q) =
1

𝑉

∫︁
∆𝑉SCF(r)𝑒−𝑖q·rdr = ∆𝑉 (q) +

4𝜋𝑒2

𝑞2
∆𝑛(q) +

d𝑣𝑥𝑐
d𝑛

∆𝑛(q). (2.25)

This is a generalized perturbation potential as a function of wavevector 𝑞. We also

need to obtain the force constant in the reciprocal space. If the position of 𝑖th atom

is,

R𝑖 = R𝑙 + 𝜏𝑠 + u𝑠(𝑙), (2.26)

where R𝑙 is 𝑙th lattice site, 𝜏𝑠 is the equilibrium position of 𝑠th atom relative to 𝑙th

lattice site and u𝑠(𝑙) is the deviation of the 𝑠th atom from its equilibrium.

Based on Eq. 2.19, the force constant involved with the displacements of 𝑖th and
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𝑗th atom is,

𝐶𝛼𝛽
𝑠𝑡 (𝑙,𝑚) =

𝜕2𝐸

𝜕𝑢𝛼𝑠 (𝑙)𝜕𝑢𝛽𝑡 (𝑚)
= 𝐶𝛼𝛽

𝑠𝑡 (R𝑙,R𝑚). (2.27)

The Fourier transform of the force constant reads,

̃︀𝐶𝛼𝛽
𝑠𝑡 (q) =

∑︁
𝑅

𝑒−𝑖q·R𝐶𝛼𝛽
𝑠𝑡 (R), (2.28)

where we take advantage of the translational symmetry and simplify the real-space

force constant to be 𝐶𝛼𝛽
𝑠𝑡 (R𝑙,R𝑚) = 𝐶𝛼𝛽

𝑠𝑡 (R). The phonon eigenfrequencies are ob-

tained by solving the equation,

det

⃒⃒⃒⃒
1√
𝑀𝑠𝑀𝑡

̃︀𝐶𝛼𝛽
𝑠𝑡 (q) − 𝜔2(q)

⃒⃒⃒⃒
= 0. (2.29)

In polar materials, the long-range polarization field as described by Eq. 1.43 leads

to a force constant that cannot be defined through Fourier transform as in the long

wavelength limit, the force constant diverges. Such divergence can be resolved by

adding a correction term — the nonanalytic force constant.

2.3.1 Nonanalytical force constant in polar materials

The Born effective charge is a tensor defined by,

𝑒𝑍*𝛼𝛽𝑠 = Ω
𝜕P𝛼

𝜕𝑢𝛽𝑠 (q = 0)

⃒⃒⃒⃒
E=0

, (2.30)

where 𝑃𝛼 is the polarization vector due to atom displacements. In first-principle

calculation, the polarization per unit cell is written as,

𝑃𝛼 =
1

Ω

∑︁
𝑠,𝛽

𝑒𝑍*𝛼𝛽𝑠 𝑢𝑠,𝛽 +
𝜖𝛼𝛽∞ − 𝛿𝛼𝛽

4𝜋
𝐸𝛽. (2.31)
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Another important quantity that is related to the polarization is the high-frequency

electronic dielectric constant tensor,

𝜖𝛼𝛽∞ = 𝛿𝛼𝛽 + 4𝜋
𝜕𝑃𝛼

𝜕𝐸𝛽

⃒⃒⃒⃒
u𝑠(q=0)=0

, (2.32)

where 𝛿𝛼𝛽 is Kronecker delta. With the Born effective charge and dielectric constant

being defined, the nonanalytic force constant writes,

na𝐶𝛼𝛽
𝑠𝑠′ (q) =

4𝜋

Ω
𝑒2

(q · Z*𝑠)𝛼(q · Z*𝑠′)𝛽
q · 𝜖∞ · q

. (2.33)

In cubic systems, the transverse phonon mode does not induce long-range electrical

field yet the longitudinal phonon mode does. Thus, the phonon frequency of lon-

gitudinal optical phonon mode is usually higher than the transverse optical phonon

mode. In cubic materials, the longitudinal phonon frequency is,

𝜔LO =

√︃
𝜔2

TO +
4𝜋𝑒2𝑍*2

Ω𝜖∞𝑀
. (2.34)

The frequency difference between longitudinal optical phonon and transverse optical

phonon near Γ point in the Brillouin zone is named as LO-TO splitting. The nonan-

alytical force constant makes sure the correct LO-TO splitting in phonon dispersion.

2.3.2 The screening effect of free carriers on phonons

In highly-doped semiconductors, the free carriers can respond to the polarization

generated by the ion. Effectively, the long-range electrical field that leads to LO-

TO splitting is screened, shown in Fig. 2-1. To include the screening effect in our

calculation, we will derive the correction term for the nonanalytical force constant.

The Lindhard dielectric function, as derived in Appendix A, is,

𝜖(𝑞) = 1 +
1

2

𝑘2𝑇𝐹

𝑞2
+

1

2

𝑘2𝑇𝐹

𝑞2
𝑘𝐹
𝑞

(︂
1 − 𝑞2

4𝑘2𝐹

)︂
ln

⃒⃒⃒⃒
2𝑘𝐹 + 𝑞

2𝑘𝐹 − 𝑞

⃒⃒⃒⃒
(2.35)
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Figure 2-1: The screening effect of free carriers on the optical phonon modes. At the
limit of 𝑞 → 0, the LO and TO modes converges given strong enough screening effect

where the Thomas-Fermi wavevector is defined by,

𝑘2TF =
𝑒2

𝜖0𝜖∞

𝜕𝑛

𝜕𝐸𝐹

= − 𝑒2

𝜖0𝜖∞

∫︁
𝑔(𝜀)

𝜕𝑓

𝜕𝜀
d𝜀. (2.36)

In the parabolic band model, the Thomas-Fermi wavevector can be expressed as

𝑘𝑇𝐹 =
√︁

𝑒2𝑛
𝜖0𝜖∞𝑘𝐵𝑇

. From Fig. 2-2, we find that the using the density of states from

DFT calculation renders similar screening radius. The discrepancy is attributed to

the non-parabolic nature of the band structures of PbTe. The 𝑘𝐹 in Eq. 2.35 is the

Fermi velocity. Equivalently,

𝜖𝐿(𝑞) = 1 +
𝑘2𝑇𝐹

𝑞2

[︃
1

2
+

1 − 𝑥2

4𝑥
ln

⃒⃒⃒⃒
1 + 𝑥

1 − 𝑥

⃒⃒⃒⃒ ]︃
(2.37)

where 𝑥 = 𝑞/2𝑘𝐹 . Till now, the band is assumed to be parabolic, the Fermi energy

should be much larger than 𝑘𝐵𝑇 . In fact, we find in PbTe that only small |q| can lead

to strong Fröhlich interaction thus the choice of dielectric constant at large |q| would

not affect the accuracy of the transport calculation. Furthermore, we argue that

for those LO phonons that induce POP scattering, the phonon wavevector satisfies

|q| ≪ 2𝑘𝐹 in highly-doped PbTe. In such conditions, the Lindhard dielectric can be
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Figure 2-2: The inverse of the Thomas-Fermi wavevector (1/𝑘𝑇𝐹 ) — screening
radius as a function of carrier density from DFT and from parabolic band model.

further reduced to Thomas-Fermi screening model,

𝜖(𝑞) = 𝜖∞

(︂
1 +

𝑘2𝑇𝐹

𝑞2

)︂
, (2.38)

where 𝜖∞ is ion-clamped (high frequency) macroscopic dielectric constant from DFPT[23][53].

After plugging in the dielectric constant in Eq.2.38 into Eq. 2.33, we can express the

screened long-range force constant as,

na𝐶𝛼𝛽
𝑠𝑠′ (q) =

4𝜋

Ω
𝑒2

(q · Z*𝑠)𝛼(q · Z*𝑠′)𝛽
|q|2𝜖∞(1 +

𝑘2𝑇𝐹

𝑞2
)
. (2.39)

2.3.3 Phonon dispersion of PbTe with different carrier con-

centrations

The force constant in Eq. 2.28 is defined on a uniform q-point mesh in standard DFPT

calculation. To capture the long-range feature of LO phonon, we directly subtract

the force constant with nonanalytical force constant described by Eq. 2.33 to obtain
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a purely short-range force constant. Then, we add back the screened long-range force

constant in Eq. 2.39 to examine the case the excess free carriers due to doping. In

the calculation, we use a 6 × 6 × 6 𝑞-point mesh. In order to match the bulk phonon

dispersion with neutron scattering, a Born effective charge of 𝑍* = 5.8 and a dielectric

constant of 32 from Ref.[36] are adopted.

We demonstrate the consequence of the screening effect: the weakened LO-TO

splitting, by calculating the phonon dispersion with various carrier concentrations.

In Fig. 3-4 (c), we clearly observe that as the carrier concentration increases, the gap

between LO and TO phonons near zone center is progressively narrowed. In the high-

carrier-concentration limit and the long-wavelength limit, one should no longer be able

to distinguish a LO and TO phonon since the screening length has becomes so small

that the long-range dipole field responsible for the LO-TO splitting vanishes. The

convergence of long-wavelength LO and TO phonon reminds us to examine whether

it gives rise to stronger anharmonicity since TO phonon contributes remarkably to

phonon-phonon scattering in PbTe[12]. However, we do not observe any noticeable

difference after carrying out thermal conductivity calculation, because an only small

fraction of LO phonons become TO phonons such that the three-phonon scattering

phase space is barely modified.
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Figure 2-3: The phonon dispersion for different free carrier concentrations compared
with neutron scattering experiment[10].
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Chapter 3

Electron-phonon interaction in from

first principles

The electron-phonon interaction is a fundamental type of interaction in solids that

significantly influences the transport of electrons. The superconductivity, Joule heat-

ing, thermal relaxation of electrons, Raman spectroscopy et al. are all closely related

to electron-phonon interaction. Despite a very long history of study of electron-

phonon interaction, an accurate, fully first-principle formalism was not accessible

until recently, as the dimensions of the quantity of interest is huge. Thus, the ab

initio electron-phonon coupling calculation can be computationally infeasible. In this

Chapter, we will introduce a scheme named electron-phonon Wannier interpolation

which allows us to calculate electron-phonon interaction with relatively low cost and

high accuracy.
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3.1 Electron-phonon interaction to the lowest order

The Hamiltonian of a coupled electron-phonon system is[20]:

𝐻̂ =
∑︁
𝑛k

𝜀𝑛k𝑐
†
𝑛k𝑐𝑛k +

∑︁
q𝜈

ℎ̄𝜔q𝜈

(︀
𝑎̂†q𝜈 𝑎̂q𝜈 + 1/2

)︀
+𝑁−1/2𝑝

∑︁
k,q
𝑚𝑛𝜈

𝑔𝑚𝑛𝜈 (k,q) 𝑐†𝑚k+q𝑐𝑛k

(︁
𝑎̂q𝜈 + 𝑎̂†−q𝜈

)︁

+

[︃
𝑁−1𝑝

∑︁
k,q,q′

𝑚𝑛𝜈𝜈′

𝑔DW
𝑚𝑛𝜈𝜈′ (k,q,q′) 𝑐†𝑚k+q+q′𝑐𝑛k

(︁
𝑎̂q𝜈 + 𝑎̂†−q𝜈

)︁(︁
𝑎̂q′𝜈′ + 𝑎̂†−q′𝜈′

)︁]︃
,

(3.1)

where 𝜀𝑛k is the eigen-energy of a electron state with wavevector k in the branch 𝑛,

while 𝜔q𝜈 is the frequency of a phonon state with wavevector q in the branch 𝜈. The

creation operator 𝑐†𝑛k creates an electron state |𝑛k
⟩︀

and the annihilation operator

annihilates an electron state |𝑛k
⟩︀
. Similarly, the creation operator 𝑎̂†q𝜈 creates a

phonon state |q𝜈
⟩︀

and the annihilation operator 𝑎̂†q𝜈 annihilates a phonon state |q𝜈
⟩︀
.

𝑁𝑝 is the number of unit cells in a periodic supercell. In the first line of the equation,

electrons and phonons are described separately. The second line of the equation

corresponds the electron-phonon coupling to the first order of the atom’s lifetime

displacements[44]. The third line of the equation describes the higher-order electron-

phonon interaction.

The electron-phonon coupling matrix to the lowest-order approximation is given

by,

𝑔𝜈𝑚𝑛 (k,q) =

(︂
ℎ̄

2𝑚0𝜔𝜈q

)︂ 1
2
⟨
𝜓𝑚k+q

⃒⃒⃒𝜕𝑉SCF

𝜕u𝜈q

· e𝜈q
⃒⃒⃒
𝜓𝑛k

⟩
, (3.2)

where 𝑚0 is the electron rest mass, 𝜓𝑛k is the electron wavefunction. The lowest-order

electron-phonon interaction is responsible for the broadening of the electron states

(i.e. the finite lifetime of electrons). 𝜕𝑉SCF/𝜕u𝜈q ·e𝜈q is the first-order variation of the

self-consistent potential energy due to the presence of a phonon, as depicted Eq. 2.22

in Chapter 2.

The higher-order Debye-Waller term of electron-phonon coupling matrix is given
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by,

𝑔DW
𝑚𝑛𝜈𝜈′ (k,q,q′) =

ℎ̄

2𝑚0𝜔𝜈q𝜔𝜈′q′

⟨
𝜓𝑚k+q+q′

⃒⃒⃒𝜕𝑉SCF

𝜕u𝜈q

· e𝜈q
𝜕𝑉SCF

𝜕u𝜈′q′
· e𝜈′q′

⃒⃒⃒
𝜓𝑛k

⟩
. (3.3)

It is believed that Debye-Waller term is responsible for the band energy renormal-

ization: at high temperatures, the electronic bands can be significantly modified by

the electron-phonon interaction. In narrow-band-gap thermoelectric materials like

PbTe, the band gap is strongly dependent on temperature due to Debye-Waller type

of electron-phonon scattering[63]. The higher-order coupling is complicated to be

computed and beyond the scope of this thesis.

3.2 Electron-phonon Wannier interpolation

The energy of electrons is around several eV, while the energy of phonons is in meV

scale. The phonon absorption where 𝑛k + 𝜈q → 𝑚k′ requires that the momen-

tum is conserved with discrete translational symmetry: k + q = k′ + G (G is

the reciprocal lattice vector). More importantly, the energy conservation requires

𝜀𝑛k + ℎ̄𝜔𝜈q = 𝜀𝑚k′ . Similarly, the phonon emission process where 𝑛k → 𝜈q + 𝑚k′

requires that k = q + k′ + G and 𝜀𝑛k = ℎ̄𝜔𝜈q + 𝜀𝑚k′ Due to the large mismatch

in energy between electrons and phonons, a very dense 𝑘-point mesh is needed for

direct calculation in the search of possible electron-phonon scattering modes such

that energy and momentum conservation can be satisfied. The resultant severe com-

putational challenge demands alternative approaches to obtain the electron-phonon

coupling matrix.

3.2.1 Maximumly localized Wannier function

In periodic solids, the translational symmetry leads to the Bloch’s theorem where the

Bloch orbitals are Bloch amplitude multiplied by the phase which extends to the whole

material. The Bloch orbitals are eigenstates of Hamiltonian. The Wannier function,

localized in real space, is transformed from Bloch orbital[47]. For Bloch function, each
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orbital is marked with a k and it has a well-defined energy. For Wannier function,

however, we cannot find the energy level of the orbital as it is a band. Thus we say

we the localization in real space of Wannier function is achieved by losing localization

in energy.

The Wannier function is defined by unitary transform (preserving the length of a

vector), ⃒⃒
𝑚R𝑒

⟩︀
=
∑︁
𝑛k

𝑒−𝑖k·R𝑈𝑛𝑚,k

⃒⃒
𝑛k
⟩︀
, (3.4)

where 𝑈𝑛𝑚,k is a unitary matrix. The plane wave basis can be recovered through

inverse Fourier transform,

⃒⃒
𝑛k
⟩︀

=
1

𝑁𝑒

∑︁
𝑚R

𝑒−𝑖k·R𝑈 †𝑛𝑚,k

⃒⃒
𝑚R𝑒

⟩︀
. (3.5)

The idea of the Wannier function is to find an alternative basis to replace plane wave

basis. Since the number of Wannier functions per unit cell is the number of electrons

per unit cell, much smaller than the number of plane waves typically used in DFT

calculation, the computational cost can potentially be reduced. Apparently, the uni-

tary transformation is not unique, as long as the Wannier functions are orthogonal.

A localization criterion is proposed by Marzari and Vanderbilt[47] to obtain the max-

imumly localized Wannier function iteratively. The localization functional is defined

by,

Ω =
∑︁
𝑛

[︂ ⟨︀
𝑛0|𝑟2|𝑛0

⟩︀
− ⟨𝑛0|𝑟|𝑛0⟩2

]︂
. (3.6)

This quantity is actually the quadratic spreads of Wannier function around their cen-

ters in the home unit cell. By minimizing the localization functional through refining

the unitary matrix 𝑈𝑛𝑚,k, we are able to obtain the maximumly localized Wannier

function. The Wannier function can be calculated using Wannier90[51] package once

we have the Bloch orbitals from DFT calculation. In Fig. 3-1, the maximumly local-

ized Wannier functions of Pb and Te atom in PbTe are shown. Different color of the

isosurface (iso-charge-density) indicates the opposite sign of the values of Wannier

orbitals. The shape of isosurface displays the character of 𝜎-bounded combination of
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Te Pb

Figure 3-1: The maximumly localized Wannier orbitals of Pb and Te in PbTe
without spin-orbit coupling. The symmetry of the material is not conserved during

the iterative process of minimizing the localization functional.

𝑝 orbitals. However, the symmetry revealed by maximum localized Wannier function

is lower than the crystal symmetry. This is because of the lack of symmetry constraint

in the localization functional in Eq. 3.6.

3.2.2 Electron-phonon coupling matrix in the Wannier repre-

sentation

In order to proceed to construct the electron-phonon coupling matrix in Wannier

representation, we need to first discuss the perturbation due to phonon in the Wannier

representation,

𝜕q𝜈𝑉 (r) =
∑︁
𝜅,R𝑝

𝑒𝑖q·R𝑝u𝜈
𝜅 · 𝜕𝜅,R𝑝𝑉 (r), (3.7)

where the displacement 𝑢𝜈q𝜅 = (𝑚0/𝑚𝜅)1/2e𝜈q𝜅. The inverse transform from Bloch

representation to Wannier representation reads,

𝜕𝜅,R𝑝𝑉 (r) =
1

𝑁𝑝

∑︁
q𝜈

𝑒−𝑖q·R𝑝 [𝑢𝜈q𝜅]−1𝜕q𝜈𝑉 (r). (3.8)

Then, we can rewrite the electron-phonon coupling matrix defined in Eq. 3.2 in the

Wannier representation:⟨
𝑚k + q

⃒⃒⃒⃒
𝜕𝑉SCF

𝜕u𝜈q

· e𝜈q
⃒⃒⃒⃒
𝑛k

⟩
=

1

𝑁2
𝑒

∑︁
𝑚′𝑛′𝜅

∑︁
R𝑒R′

𝑒R𝑝

𝑒𝑖[k·(R𝑒−R′
𝑒)+q(R𝑝−R′

𝑒)]

× u𝜈
q𝜅 · 𝑈𝑚𝑚′,k+q

⟨
𝑚′R𝑒

⃒⃒⃒⃒
𝜕𝑘,R𝑝𝑉SCF

⃒⃒⃒⃒
𝑛′R𝑒

⟩
𝑈 †𝑛′𝑛k.

(3.9)
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Using the translational symmetry of the matrix, we can simplify the matrix element

in Wannier representation as,

𝑔(k,q) =
1

𝑁𝑒

∑︁
R𝑒,R𝑝

𝑒𝑖(k·R𝑒+q·R𝑝)𝑈k+q𝑔(R𝑒,R𝑝)𝑈
†
ku𝑞, (3.10)

where electron-phonon matrix in Wannier representation is,

𝑔𝑚𝑛,𝜈(R𝑒,R𝑝) =
⟨︀
𝑚0𝑒|𝜕𝜈,R𝑝𝑉 |𝑛R𝑒

⟩︀
=

1

𝑁𝑝

∑︁
k,q

𝑒−𝑖(k·R𝑒+q·R𝑝)𝑈 †k+q𝑔(k,q)𝑈ku
−1
q

(3.11)

where the last term the band index 𝑛 and 𝑚 is hidden. It is shown by [21] that

the matrix element 𝑔𝑚𝑛,𝜈(R𝑒,R𝑝) vanishes at the distance of several unit cells to the

origin, the localized feature of the matrix element allows us to interpolate the matrix

over a dense mesh without costing too much computational resource.

3.3 Electron-phonon coupling matrix in polar mate-

rials

3.3.1 Screened Fröhlich interaction

In polar materials, the standard Wannier interpolation fail to reproduce the correct

electron-phonon coupling matrix elements in the small 𝑞 limit. This is because: sim-

ilar to the origin of LO-TO slitting where long-range dipole field emerges due to

longitudinal optical phonon, the same field induces interaction between electrons and

optical phonons, known as Fröhlich interaction. The electron-phonon coupling matrix

can be decomposed into two parts,

𝑔𝑚k+q
𝑛k,𝜈q = 𝑔𝑚k+q, short

𝑛k,𝜈q + 𝑔𝑚k+q, long
𝑛k,𝜈q . (3.12)
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The form of the long-range electron-phonon coupling matrix writes,

𝑔𝑚k+q, long
𝑛k,𝜈q =

𝑖𝑒2

Ω𝜖0

∑︁
𝑠,G ̸=−q

(︂
ℎ̄

2𝑁𝑀𝑠𝜔𝜈q

)︂1/2

× (q + G) · Z*𝑠 · e𝑠𝑝(q)

(q + G) · 𝜖∞ · (q + G)

⟨︀
𝑚k + q|𝑒𝑖(q+G)·r|𝑛k

⟩︀
,

(3.13)

where G is the lattice site in the reciprocal space. Apparently, the long-range electron-

phonon coupling is |𝑔𝑚k+q, long
𝑛k,𝜈q | ∼ 1/|q + G|, leading to divergence in Fourier trans-

form.

The presence of free carriers can modulates the strength of the long-range electron-

phonon coupling by screening the dipole field of LO phonon. Similar to the proce-

dures to include screening effect in Sec. 2.3.3, we can express the screened long-range

electron-phonon matrix element viz.,

𝑔𝑚k+q, long
𝑛k,𝜈q =

𝑖𝑒2

Ω𝜖0

∑︁
𝑠,G ̸=−q

(︂
ℎ̄

2𝑁𝑀𝑠𝜔𝜈q

)︂1/2

× (q + G) · Z*𝑠 · e𝑠𝑝(q)

|q + G|2 · 𝜖∞ ·
(︁

1 +
𝑘2𝑇𝐹

𝑞2

)︁ ⟨︀𝑚k + q|𝑒𝑖(q+G)·r|𝑛k
⟩︀
.

(3.14)

When the Thomas-Fermi wavevector is small, the nonanalytical feature still remains.

Note that the DFPT calculation is defined on a grid, e.g. 6 × 6 × 6. This is equivalent

to a real-space calculation for a 6 × 6 × 6 supercell. In principle, one can successively

increases size of the mesh used in DFPT calculation to capture the long-range feature

of the LO phonon. In practice, the largest size of the supercell that is computationally

achievable is still much smaller compared with typical characteristic length of dipole

field generated by LO phonon. To deal with such dilemma, we will first subtract the

long-range part of electron-phonon coupling matrix in the Bloch representation with

the form in Eq. 3.13. The resultant part of the electron-phonon coupling matrix is

short-range. The short-range feature guarantees fidelity of Wannier transformation.

We then construct the electron-phonon matrix element in the Wanner representation

based on such short-range matrix element. Starting with the localized Wannier matrix

element, we apply an inverse transform to obtain the short-range electron-phonon
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matrix element on a very fine-mesh (in this calculation, 200× 200× 200 implemented

in a home-modified version of the EPW code[57]). Finally, we add back the screened

long-range electron-phonon matrix in Eq.3.14 on the same fine mesh and obtain the

full electron-phonon coupling matrix on a very fine mesh. Note that when we do the

subtraction, we have not included the screening effect as the perturbation by phonon

from DFPT calculation is calculated in a pristine bulk system without any excess

carrier, which requires us to use the non-screened form of the long-range electron-

phonon coupling element in the subtraction.

3.3.2 Electron-phonon coupling matrix for different phonon

polarization in PbTe

Electrons at L point . The conduction band minimum of PbTe is at L point. To un-

derstand the coupling between the electrons at band edge and phonons, the electron-

phonon coupling matrix including the screened/unscreened Fröhlich part and short-

range part is calculated, shown in Fig. 3-2. For all acoustic phonons and transverse

optical phonons, the screening effect does not lead to any difference. For LO phonon

with large 𝑞, the screening effect is negligible as the alignment of ions with opposite

charges is short-range, creating very weak dipole field. For LO phonon with small

𝑞 near the Γ point, the screening effect slightly reduces the strength of electron-LO-

phonon coupling. Particularly, the screening effect does not remove the divergence

near the Γ point (|𝑔| ∼ 𝑞−1). In addition, the electron-phonon coupling strength

for LO phonons only dominates over other phonon branches when 𝑞 is small. For

example, for phonons with 𝑞 on the path X → Γ, the coupling between electron

and TO phonon is strong except near the Γ point. For phonons at L point, the

coupling between electron and LO phonon is strongest among all phonon branches.

However, such strong coupling does not contribute to the scattering rate since energy

conservation is not satisfied: ℎ̄𝜔LO,L < 𝜀Γ − 𝜀L.

Electrons away from L point . Since the electron at L point has zero group velocity,

we want to understand the coupling between phonons and electrons away from L
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Figure 3-2: The amplitude of the electron-phonon coupling matrix element for
electron at conduction band minimum and phonons at the high-symmetry paths

with/without considering screening in the long-range (Fröhlich) part of the
electron-phonon coupling matrix. The carrier concentration is 1018cm−3.

point with finite group velocity as well. In Fig. 3-3 (a), we present the coupling

strength between electrons at high-symmetry path and LO phonons at high-symmetry

path. As the phonon wavevector approaches the zone boundary, the electron-phonon

coupling strength decreases with electron moving away from the bottom of L valley.

As the phonon wavevector approaches Γ point, the coupling strength is largest when

the electron is around L + 0.3 × (Γ − L). Overall, the electron-phonon coupling

strength decreases as phonon wavevector increases. In the low 𝑞 limit, the electron-

phonon coupling is independent of the wavevector of electrons, as shown in Fig. 3-3

(b).

The coupling between TO phonon and electrons is demonstrated in Fig. 3-3 (c).

We find that the coupling between TO phonons and electron at the L valley bottom is

strongest among all phonon polarizations except that for 𝑞 → 0 the electron-phonon

strength rapidly approaches 0. Also, aside from 𝑞 → 0, the coupling strength decreases
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(a) (b)

(c) (d)

Figure 3-3: The amplitude of the electron-phonon coupling matrix element including
screening effect for electrons at L → Γ path and LO/TO phonons at Γ → L. In (a)
and (c), different colors mark different electron states. In (b) and (d), the strength
of the coupling between Γ point LO/TO phonon and different electron states are

shown. Note that for LO phonon, the exact 𝑞 = 0 behavior cannot be calculated due
to the divergence shown in Eq. 3.14 thus we use 𝑞 = 0.01 × 𝑙ΓL = 0.01 ×

√
3
2

𝜋
𝑎

to
represent the extreme case 𝑞 = 0. The carrier concentration is 1018 cm−3.

whet the electron gets away from the bottom of the L valley. As shown in Fig. 3-3

(d), we find that near the L point, the coupling strength is exactly 0 while it rapidly

increases with the electron moving away from valley bottom. Similarly, the coupling

strength starts from 0 and increases as electron is further away from Γ point towards

L point. For the phonon near the middle of L and Γ point, there is a local minimum

of the electron-phonon coupling matrix. At this stage, we cannot explain clearly the

origin of the complicated trend of the electron-phonon coupling as a function of 𝑘

and 𝑞. However, we can expand the band structure using k ·p method near the band

extreme and express the electron-phonon coupling matrix in the low 𝑘 and low 𝑞 limit.
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Meanwhile, we need to take into account the crystal symmetry of PbTe to unveil the

root of zero electron-phonon coupling strength at certain high-symmetry point.

3.4 Relaxation time approximation

3.4.1 Electron-phonon scattering rate

The electron-phonon self-energy based on Migdal approximation[48] is defined by,

Σ𝑛k =
∑︁
𝑚𝜈𝑞

⃒⃒
𝑔𝜈𝑚𝑛 (k,q)

⃒⃒2
[︂

𝑛𝜈q + 𝑓𝑚k+q

𝜖𝑛k − 𝜖𝑚k+q + ℎ̄𝜔𝜈q − 𝑖𝜂
+

𝑛𝜈q + 1 − 𝑓𝑚k+𝑞

𝜖𝑛k − 𝜖𝑚k+q − ℎ̄𝜔𝜈q − 𝑖𝜂

]︂
,

(3.15)

where 𝑔𝜈𝑚𝑛 (k,q) is the electron-phonon coupling matrix element in Bloch represen-

tation and 𝑛𝜈q is the phonon distribution. 𝜖𝑛k is the electron energy and 𝜔𝜈q is the

phonon frequency.

The electron-phonon scattering rate can be calculated from the imaginary part

of self-energy Σ𝑛k by Γ𝑛k = 1/ℎ̄ Im Σ𝑛k. The explicit form of the electron-phonon

scattering rate can be written as,

Γ𝑛k =
∑︁
𝑚𝜈𝑞

𝜋

ℎ̄

⃒⃒
𝑔𝜈𝑚𝑛 (k,q)

⃒⃒2
×
[︁

(𝑛𝜈q + 1 − 𝑓𝑚k+𝑞) 𝛿 (𝜖𝑛k − 𝜖𝑚k+q − ℎ̄𝜔𝜈q)

+ (𝑛𝜈q + 𝑓𝑚k+𝑞) 𝛿 (𝜖𝑛k − 𝜖𝑚k+q + ℎ̄𝜔𝜈q)
]︁
.

(3.16)

The inverse of the scattering rate gives the relaxation time, 𝜏𝑛k = 1/Γ𝑛k.

1

𝜏𝑛k
=

2𝜋

ℎ̄

∑︁
𝑚,𝜈q

⃒⃒⃒
𝑔𝑚k+q
𝑛k,𝜈q

⃒⃒⃒2
×
[︁
(𝑛𝜈q + 1 − 𝑓𝑚k+q)𝛿(𝜀𝑛k

− 𝜀𝑚k+q − ℎ̄𝜔𝑝q)

+ (𝑛𝑝q + 𝑓𝑚k+q)𝛿(𝜀𝑛k
− 𝜀𝑚k+q + ℎ̄𝜔𝑝q)

]︁
.

(3.17)

The electron-phonon scattering rates due to different phonon branches without con-

sidering the screening effect is shown in Fig. 3-4 (a). The scattering due to LO
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Figure 3-4: (a-b) The energy-resolved electron-phonon scattering rates for
conduction band electrons due to phonon modes of different branches at 300 K

with/without considering the screening effect. The zero energy marks the
conduction band minimum and the dashed line indicates the location of chemical

potential. The carrier concentration is 2.3 ×1019 cm−3.

phonons is stronger than other phonon branches. Near the conduction band mini-

mum, only phonon absorption process is allowed to happen. When electron energy is

larger than energy of a LO phonon, both phonon absorption and emission can hap-

pen. This leads to the sudden jump in the scattering rate near 0.01 eV. Note that

the dielectric constant calculated from DFPT is 104, which is overestimated com-

pared with experiment reported value 32[10]. As a result, the LO phonon frequency

is 10 meV from the calculation, which is underestimated than thevalue of the value

of 13 meV found through neutron scattering experiment[10]. One interesting feature

of the scattering rate due to LO phonon is the relatively weak energy dependence.

The scattering due to LO phonon consists of two contributions: the non-polar optical

phonon deformation potential (ODP) scattering and POP scattering, as discussed

in detail in Ref.[41]. The non-polar ODP scattering rate scales with
√
𝐸 (𝐸 is the

electron energy measured from conduction band edge), and the POP scattering rate

scales with sinh−1(
√
𝐸) assuming a parabolic band. The actual non-parabolic band

structure of PbTe might change the exact energy dependence of scattering rates. Still

qualitatively, the POP scattering rate increases less rapidly with increasing electron

energy than the non-polar ODP scattering rate.
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When including the screening effect shown in Fig. 3-4 (b), the scattering rate due

to LO phonon decreases especially for low-energy electrons (𝐸 < 0.1 eV). At the

conduction band minimum, because of the screening effect, the scattering rate due

to LO phonon decreases from 2.5 THz to 0.5 THz. On the contrary, the reduction

is much less noticeable for high-energy electrons. The screening effect in principle

should only be able to affect POP scattering rather than ODP scattering. For high-

energy electrons (𝐸 > 0.1 eV), non-polar ODP scattering is much stronger than POP

scattering so that the reduction in POP scattering becomes less discernible than low-

energy electrons.

Iterative BTE solver beyond RTA. The relaxation time approximation is valid when

the phonon energy is negligible compared with the energy of electron[8][62]. Typically,

the high energy of LO phonon involved in the polar scattering process in polar material

make RTA invalid. By defining an effective electron mean free displacement F𝑛k, the

deviation of the distribution function is subject to the equation,

𝑓𝑛k − 𝑓 0
𝑛k =

𝑓 0
𝑛k(1 − 𝑓 0

𝑛k)

𝑘𝐵𝑇
𝑒E · F𝑛k. (3.18)

After some numerical operations, the mean free displacement is subject to the relation,

F𝑛k = 𝜏RTA
𝑛k

[︂
v𝑛k + [𝜏RTA

𝑛k ]−1F𝑛k

]︂
(3.19)

By iteratively solving Eq. 3.19, we can obtain the transport properties derived in

Sec. 1.2.2 by replacing v𝑛k𝜏𝑛k with F𝑛k.

3.4.2 Phonon scattering rate by electrons

It’s found by Liao[39][38] that the phonon scattering due to electron-phonon interac-

tion is stronger as carrier density increases. In silicon with carrier concentration as

high as 1021cm−3 the thermal conductivity is reduced by 45 % due to electron-phonon
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interaction. The phonon scattering rate by electrons is defined by,

1

𝜏𝜈q
=

2𝜋

ℎ̄

∑︁
𝑚𝑛

∫︁
𝑑k

Ω𝐵𝑍

⃒⃒⃒
𝑔𝑚k+q
𝑛k,𝜈q

⃒⃒⃒2
(𝑓𝑛k − 𝑓𝑚k+q) 𝛿(𝜀𝑚k+𝑞 − 𝜀𝑛k − ℎ̄𝜔𝜈q) (3.20)

In Fig. 3-5, the scattering rates for phonons due to electron-phonon interaction is

Figure 3-5: The scattering rate for phonons due to electron-phonon interaction
compared with the scattering rate due to phonon-phonon interaction at 300 K with

the carrier concentration of 1021cm−3.

plotted in comparison with the scattering rates due to phonon-phonon scattering.

The phonon thermal conductivity is barely affected by the electron-phonon coupling,

as the scattering rate due to electron-phonon interaction is negligible compared with

phonon-phonon interaction. Nevertheless, there are still some interesting features

especially compared with the scattering rate due to electron-phonon interaction in

silicon. Firstly, there is no phonon bandgap in PbTe. As a result, the scattering

rate due to electron-phonon interaction continuously increases as phonon frequency

increases. In addition, the scattering rate due to electron-phonon interaction is highly

sensitive to the momentum thus leading to a broad spread of the scattering rate at
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given phonon frequency. Lastly, the scattering rate due to electron-phonon interaction

exceeds the phonon-phonon scattering rate when phonon frequency is about 110 cm−1.

This energy is referred to the LO phonon at L point which can be scattered by low-

energy electrons near conduction band minimum at L point into phonon states near

the Γ point.
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Chapter 4

The electron mean free paths and

transport properties in PbTe

For PbTe, the thermal transport has also been examined from the first principles yield-

ing that phonons with mean free paths smaller than 10 nm contribute the majority

of the thermal conductivity[70]. However, its electron transport properties and elec-

tron mean free paths are much less understood. Past works have mostly employed

the constant relaxation time approximation when studying the electrical transport

properties of PbTe[64][75]. Although good agreements with experiments have been

achieved for the Seebeck coefficient, the detailed information on the charge carrier

dynamics remains unknown. In particular, by adopting the single/double Kane band

model together with multiple scattering mechanisms, past works successfully explain

the trend of the experimental findings[74][66][60][61], yet the analysis requires the

fitting parameters extracted from experimental results thus not necessarily unveiling

the correct physical pictures.

In this chapter, we evaluate the electron scattering rates and electron mean free

paths due to electron-phonon interaction using first principles for 𝑛-type PbTe. By

further comparing the mean free paths of electrons with phonons, we are able to

thoroughly examine the electron transport and phonon transport in PbTe at the same

time. The detailed spectral information on the thermoelectric properties of PbTe not

only provides microscopic pictures of the dynamics of electron and phonon but can
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be used to rationalize the design of the nanostructured PbTe to decouple electron and

phonon transport in order to boost the thermoelectric performance. Finally, we try

to understand the why PbTe has high mobility and high Seebeck coefficient in PbTe

at the same time.

4.1 Ab initio thermoelectric transport properties

4.1.1 The effect of screening

The electron transport properties for 𝑛-type PbTe at room temperature with/without

considering the screening effect of the free carriers are demonstrated in Fig. 4-1.

The free carriers in doped PbTe screen the dipole field generated by ion vibration

outside the sphere defined by the screening length. One thus expects reduced POP

scattering and higher mobility after taking into account the screening effect. We notice

from Fig. 4-1 that considering the screening effect does yield higher mobility and

conductivity than without the screening effect, as well as a more desirable agreement

with experiment even though the discrepancies in Seebeck coefficient and power factor

for the two cases are not significant.

Fig. 4-2 (a) shows that the mean free path for low-energy electrons increases

dramatically when including the screening effect. Although the LO phonon scattering

is the prominent scattering source (both for cases with/without screening), it is not

strong enough to totally overshadow the contribution from TO phonons and acoustic

phonons. For electrons with energy near the chemical potential, the scattering of

non-LO phonons contributes to the total scattering comparably with LO phonons.

Note the electron group velocity near the chemical potential is weakly dependent on

energy, as also shown in Ref.[9]. That is to say, the electron mean free path is a

monotonically decreasing function of energy near the chemical potential because the

electron relaxation time decreases monotonically with an increase in energy.
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(a)

(b)

(c) (d)

Figure 4-1: (a) The mobility, (b) the electrical conductivity, (c) the Seebeck
coefficient, and (d) the power factor of PbTe as a function of carrier concentration
at 300 K with and without considering the screening effect. Dotted lines are from

simulation and isolated dots are experimental value. The triangles are from Ref.[26],
squares from Ref.[54], diamonds from Ref.[67], and crosses from Ref.[15].

The electrical properties of electron as a function of electron mean free path is

displayed in Fig. 4-2 (b), where the conductivity is enhanced by about 20 % due

to the screening effect. Besides, the mean free path spectrum is shifted to higher

values. An interesting feature is found in the truncated Seebeck coefficient in Fig. 4-

2 (c): up to certain mean free path, the truncated Seebeck coefficient can be even

higher than the total Seebeck coefficient. As is known, above the chemical potential,

the electrons contribute dominantly to the Seebeck coefficient with negative signs.

However, the electrons below the chemical potential have positive signs and they

cancel the contribution of electrons above the chemical potential. Recall the mean
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free path is almost a monotonically decreasing function of energy in Fig. 4-2 (a).

The above observation then translates to the fact that that the long-mean-free-path

electrons contributes contribute “negatively” to Seebeck whilst the short-mean-free-

path ones contribute “positively”, which explains the emergence of the peak in the

truncated Seebeck coefficient at a critical mean free path. The screening effect pushes

the critical mean free path from 35 nm to 40 nm and the peak value rises from 160

% to 210 %. In Fig. 4-2 (d) the peak power factor at the critical mean free path is as

high as 310 % with screening effect and 160 % without screening effect. We also find

that the truncated power factor with/without screening effect at the long-mean-free-

path limit are almost the same, albeit the screening effect greatly alters the mean free

path distribution.

If we compare the truncated power factor to the cumulative thermal conductivity,

we first realize that the major contribution to thermal conductivity is from phonons

with mean free paths smaller than 20 nm, whilst for the truncated power factor, most

contributions are from electrons with mean free paths higher than 20 nm. Surprisingly,

this finding contradicts with the general case where the electron means free paths are

much smaller than the phonon mean free paths, which emphasizes the importance of

considering both electron and phonon when designing the nanostructures for PbTe.

However, despite that nanostructures that scatter phonons may also scatter electrons,

the long-mean-free-path electrons contributed negatively to the Seebeck coefficient.

Nanostructures may scatter these long-mean-free-path electrons, leading to actually

increased Seebeck coefficient and decreased electrical conductivity. This is seen in

some of past experiments[69], although arguably, we cannot tell at this stage if these

past experimental observations is due to filtering of long-mean-free-path electrons or

the thermionic effect[73].

4.1.2 The effect of temperature

We proceed to study the temperature dependence of the transport properties. When

raising the temperature, the mean free paths not only decreases but covers a narrower

mean free path range, shown in Fig. 4-3. For electrons with the same energy, the
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mean free path is not a single value but forming a “band” containing a series of

possible values. The width of the “band” shrinks with rising temperature. At elevated

temperatures, the population of phonons scales with 𝑇 . From the analysis of our

calculation, the scattering rate is directly related to temperature in a power law ∝ 𝑇 .

Hence, for the electrons with the same energy, the scattering rates are rescaled by the

temperature, and the inverse of the scattering — the relaxation time, will decrease

and spread in a narrower region, causing a narrower “band”.

(a)

(b)

(c) (d)

Figure 4-2: (a) The electron mean free path as a function of energy with and
without considering the screening effect. The dashed line indicates the chemical

potential and zero energy indicates the conduction band minimum. (b) The
accumulated electrical conductivity with respect to electron mean free path. (c) The

normalized truncated Seebeck coefficient with respect to the electron mean free
path. (d) The normalized truncated power factor with respect to electron mean free

path compared with normalized accumulated phonon thermal conductivity with
respect to phonon mean free path. The dopant concentration is 2.3 ×1019 cm−3.

In addition, at higher temperatures, the chemical potential shifts towards the band
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minimum. This is because the Fermi-Dirac distribution function spreads wider in the

energy scale as temperature rises. To match the fixed amount of positively charged

ionized donors, the chemical potential must be lowered.

Figure 4-3: The electron mean free path as a function of energy at different
temperatures. The dashed line indicates the chemical potential and zero energy
corresponds the conduction band minimum. The dopant concentration is 5.8

×1019 cm−3.

The electrical transport properties as a function of electron mean free path at

different temperatures are displayed in Fig. 4-4 (a). At the room temperature, the

greatest contribution to the conductivity comes from the electrons with mean free

paths smaller than 37 nm, regarded as the maximum electron mean free path. As the

temperature is lifted, the maximum mean free path decreases. We also realize that

the height of the peak in normalized truncated Seebeck coefficient decreases when

temperature rises, as described in Fig. 4-4 (b). We refer to electron mean free path

at different temperatures in Fig. 4-3. At room temperature, the mean free paths

of electrons above and below the chemical potential contrast profoundly. At high

temperatures, such contrast gradually becomes inconspicuous, causing lowered peak

height in the normalized truncated Seebeck coefficient. In Fig.4-4 (c), the maximum
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normalized truncated power factor, is as high as 230 % at 300 K but the maximum

is almost unity at 700 K. Compared with phonon mean free path profile in Fig.4-4

(d), the mean free paths of electrons that contribute the majority of the power factor

are larger than phonons contributing the majority of the thermal conductivity at all

temperatures.

(a) (b)

(c)

(d)

Figure 4-4: (a) The accumulated electrical conductivity with respect to electron
mean free path. The normalized truncated (b) Seebeck coefficient and (c) power

factor with respect to electron mean free path. (d) The accumulated lattice thermal
conductivity with respect to phonon mean free path. The dopant concentration is

5.8 ×1019 cm−3.

The Fig. 4-5 (a) presents the conductivity as a function of temperature for differ-

ent dopant concentrations, compared with La-doped PbTe from the experiment[54].

The decrease of the mobility versus temperature is mostly because electron-phonon

scattering becomes stronger with an increase in temperature. Our calculation overall

captures the correct trend both for mobility and conductivity. However, the calcu-

lated Seebeck coefficient in Fig. 4-5 (b) is largely underestimated above 400 K for
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the lowest dopant concentration. As is known in PbTe, high temperatures flatten

the band structure near the band edge, causing a larger effective mass[61], while in

calculation, the band structure keeps unchanged. This also leads to the discrepancy

between the calculation of the calculated power factor and experimental results. The

band gap and the alignment of different valleys are function of temperature in reality

that can also alter the Seebeck coefficient, yet not captured by our constant-band-gap

calculation. In addition, the experiment demonstrates that for La-doped PbTe when

the Hall carrier concentration is above 6×1019cm−3, there is a deviation from valence

counting rule that each dopant atom provides one carrier[54]. We believe this further

contributes the differences between our calculation and experiment at 9.4×1019cm−3.

Since our first-principles calculation of electron-phonon scattering is parameter-

free, we can calculate the electronic thermal conductivity at different temperatures

for different dopant concentrations instead of relying on the Wiedemann-Franz law,

shown in Fig. 4-5 (c). For high dopant concentrations, even though the chemical

potential is being lowered towards the band minimum as the temperature is elevated,

the chemical potential is still close to the conduction band. For the low carrier con-

centration case ( 4.3 × 10−18 cm−3), the chemical potential is closer to the middle of

the band gap. With increasing temperature, holes start to contribute to the elec-

tronic thermal conductivity since the bipolar transport becomes noticeable, which

corresponds to the increase above 400 K. Note that at the high carrier concentration

(5.8×10−19 cm−3), the thermal conductivity is lower than the electronic thermal con-

ductivity which marks the significance to accurately estimate the electronic thermal

conductivity.

In the experiment, it’s usually difficult to distinguish the bipolar thermal con-

ductivity from the measured thermal conductivity. However, the bipolar thermal

conductivity can be explicitly calculated from our DFT calculation, shown in Fig. 4-5

(d). A noticeable increase is only observed in the low concentration of 4.3×10−18 cm−3

above 400 K. The total thermal conductivity is shown in Fig. 4-5 (e). Our results

in Fig. 4-5 (c) indicates that the increase of electronic thermal conductivity leads to

an increase of the total thermal conductivity. However, the experiment only shows
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a minor increase. We believe this is due to fact that the calculation does not cap-

ture the increased effective mass and temperature-dependent band gap above 400 K.

The figure of merit at high temperature is largely underestimated demonstrated in

Fig. 4-5 (f), again, due to the inaccurate band structure at high temperatures. For

the highest dopant concentration, both calculation and experiment show a monotonic

increase with temperature because the the chemical potential is still far from being

at the middle of the band gap so that the bipolar effect is insignificant.

(a)

(b) (c)

(d) (e) (f)

Figure 4-5: (a) The conductivity, (b) the Seebeck coefficient, (c) the electronic
thermal conductivity compared with phonon thermal conductivity, (d) the bipolar
thermal conductivity, (e) the total thermal conductivity and (f) the figure of merit
𝑧𝑇 of PbTe as a function of temperature for different ionized donor concentrations.

The squares are experimental results from Ref.[54]

4.2 Weakly isotropic scattering rates in PbTe

In Appendix B, we have demonstrated the strong anisotropy of the effective mass

in PbTe. The anisotropic effective mass is generally to believed to be beneficial for

thermoelectric performance. On one hand, the light mass (typically transverse ef-

fective mass) implies a high mobility. On the other hand, the heavy mass (typical
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longitudinal effective mass) indicates a high Seebeck coefficient. However, such ar-

gument is based on the constant relaxation time approximation where the details of

electron-phonon scattering is lacked. Therefore, the argument to attribute the origin

of high mobility and high Seebeck at the same time to the anisotropic band structure

is never fully justified. In Fig. 4-6, we plot the electron-phonon scattering rate as a

function of the electron wavevector. We find that the for low-energy electrons near the

band minimum, the scattering rate is dominated by electron-LO-phonon scattering.

For high-energy electrons at L → Γ path, the electron-acoustic-phonon scattering is

much more significant than the scattering between electrons and phonons with other

polarizations. Most interestingly, we not only clearly see the asymmetry of effective

mass at the band edge, but find that for electrons with energy within the range of

0.5 eV above the conduction band minimum, the scattering rate is almost isotropic.

In other words, the scattering rate profile at least does not compromise the benefits

of the anisotropic band structure.
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Figure 4-6: Electron-phonon scattering rates for different phonon polarizations
mapped into the electron band structure. L → W is light-mass direction and L → Γ

is the heavy mass-direction.
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Chapter 5

Summary and future work

5.1 Summary

We have discussed the challenges in enhancing the performances of thermoelectric ma-

terials and shown that making bulk nanostructured thermoelectric materials boosts

figure of merit 𝑧𝑇 significantly. We have identified the critical role that computational

modeling using first principles plays in guiding experimentalists to choose the best

grain size to optimize the figure of merit. Previous efforts in using ab initio method to

extract the mean free path of phonons in PbTe inspires to study the electron dynam-

ics to complete the spectrum of thermoelectric transport properties in PbTe from first

principles. The key information we need to study electron transport in PbTe is the

electron-phonon coupling matrix. However, the computational cost to calculate the

electron-phonon coupling matrix is unacceptable. Thus, we introduce the method of

electron-phonon Wannier interpolation which takes advantage of the localized feature

of the electron-phonon vertex in the Wannier representation and reduces the compu-

tational cost dramatically. We have also derived the form of the screened Fröhlich

interaction to properly take into account the effect of the dipole field associated LO

phonon in doped semiconductors.

We have studied the electron-phonon interaction in n-type PbTe from first-principles

calculation and obtain the electron-phonon scattering rates and electron mean free

paths at different temperatures. The LO phonon in PbTe plays an important role
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in determining the lifetime of electrons. The electron mean free path as a function

of energy follows almost the same trend as the relaxation time because of the weak

energy dependence of group velocity. This makes the electron mean free path de-

crease monotonically with energy. The screening effect at high carrier concentrations

weakens the LO-TO splitting for phonons and reduces the POP scattering especially

for low-energy electron. It also shifts the mean free path distribution towards higher

values whilst the integrated transport properties are slightly changed. At elevated

temperatures, the scattering rates scale with 𝑇 and the electron mean free path dis-

tribution is shifted towards lower values.

The truncated Seebeck coefficient and power factor as a function of electron mean

free path is not a monotonically increasing function. There exists a critical mean free

path, corresponding to that of the electrons at the chemical potential, below which

electrons contribute positively to the Seebeck coefficient while longer-mean-free-path

electrons contribute negatively to the Seebeck coefficient. More interestingly, unlike

in silicon, the electron mean free paths in PbTe are not significantly smaller than

the mean free paths of most of the phonons. This inspires us to further investigate

the scattering by interfaces both for electrons and phonons to rigorously and com-

prehensively answer the question if nanostructuring works better in silicon than in

PbTe.

5.2 Future work

5.2.1 Symmetry analysis on the electron-phonon coupling ma-

trix

In Sec. 3.3, we show the electron-phonon coupling matrix as a function of the electron

wavevector and phonon wavevector. At certain high-symmetry point for electrons

and phonons, the electron-phonon coupling matrix is exactly zero potentially due to

symmetry restriction. Also, for certain k and q, the electron-phonon coupling strength

is strong yet the strong coupling does not contribute to the scattering process due to
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large energy mismatch of electron initial and final states compared with the available

phonon energy. How to bridge the symmetry of the electron-phonon coupling matrix

and good thermoelectric properties is unknown. In addition to that, the PbxSn1−xTe

alloy is known as a topological crystalline insulator (TCI) whose surface state is free

of backscattering. However, at the room temperature, the surface states can still be

scattered by phonons, which limits the practical application of TCI. Understanding

the electron-phonon coupling for those surface states is crucial.

5.2.2 Scattering by the grain boundary

Bulk nanostructuring creates a high density of grain boundaries which induces scat-

tering for electrons. People have proposed Wentzel-Kramers-Brillouin (WKB) trans-

mission model[49], thermionic emission (thermionic field emission in space-charge

potential) model[11], and Landauer dipole theory[34][79], etc. However, a parameter-

free formalism using first principles to study the electron transport across the in-

terface is still lacking. Yazyev and Louie proposed the theory of charge transport

in two-dimensional polycrystalline graphene and generalized three classes of inter-

faces based on ab initio calculations[76]. It would be interesting to generalize the

three-dimensional interfacial transport theory as such theory is much more useful in

practical materials.
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Appendix A

Lindhard dielectric function

Response function for electrons . Complete time-dependent Hamiltonian for electron,

𝐻 = 𝐻0 +𝐻 ′(𝑡) (A.1)

The perturbation due to displacements of ions writes,

𝐻 ′(𝑡) =
∑︁
𝑗

𝑂𝑗(𝑡)𝐴𝑗(𝑡) (A.2)

The observable quantity out of equilibrium,

⟨𝑂𝑗(𝑡)⟩𝑛.𝑒. = ⟨𝑂𝑗(𝑡)⟩ +

∫︁
d𝜏𝜒𝑗𝑖(𝑡− 𝜏)𝐴𝑖(𝜏) (A.3)

where,

⟨𝑂𝑗(𝜔)⟩ =
∑︁
𝑖

𝜒𝑗𝑖(𝜔)𝐴𝑖(𝜔) (A.4)

Now take electron gas linearly coupled with a time-dependent external potential

𝑉𝑒𝑥𝑡(r, 𝑡) as an example,

𝐻(𝑡) = 𝐻0 +

∫︁
𝑉𝑒𝑥𝑡(r, 𝑡)𝑛(r)dr (A.5)
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where 𝑛(r) =
∑︀

𝑖 𝛿(r − r𝑖) is the density operator. Note that we assume the field

𝑉𝑒𝑥𝑡(r, 𝑡) vanishes for 𝑡 earlier than 𝑡0. For 𝑡 < 𝑡0, the system is assumed to be at

thermal equilibrium with a huge thermal reservoir. The population of different state

is defined by,

𝑃𝑛 =
𝑒−𝛽𝐸𝑛

𝑍
(A.6)

where 𝑍 =
∑︀

𝑛 𝑒
−𝛽𝐸𝑛 is the partition function in a canonical ensemble and the 𝐸𝑛

is the eigenvalue corresponding to the eigenfunction |𝜑𝑛⟩. Here, we implicitly apply

adiabatic assumption where the time evolutions that are fast on the scale of the

thermal equilibration time[19].

In Schrödinger picture, the solution for eigenvector is

|𝜑𝑛(𝑡)⟩ = 𝑈(𝑡, 𝑡0) |𝜑𝑛(𝑡0)⟩ (A.7)

where 𝑈(𝑡, 𝑡0) is the time-evolution operator,

𝑈(𝑡, 𝑡0) = 𝑒−
𝑖
ℎ̄
𝐻(𝑡−𝑡0)𝑈𝑉 (𝑡, 𝑡0) (A.8)

where the operator 𝑈𝑉 (𝑡, 𝑡0) obeys,

𝑖ℎ̄
𝜕

𝜕𝑡
𝑈𝑉 (𝑡, 𝑡0) = 𝑉𝑒𝑥𝑡(𝑡)𝑛(𝑡− 𝑡0)𝑈𝑉 (𝑡, 𝑡0) (A.9)

The time-dependent operator,

𝑛(𝑡) = 𝑒
𝑖
ℎ̄
𝐻0𝑡𝑛(𝑡0)𝑒

− 𝑖
ℎ̄
𝐻0𝑡 (A.10)

The first-order expansion of 𝑈𝑉 is,

𝑈𝑉 (𝑡, 𝑡0) = 1 − 𝑖

ℎ̄

∫︁ 𝑡

𝑡0

𝑛(𝑡′ − 𝑡0)𝑉𝑒𝑥𝑡(𝑡
′)d𝑡′ (A.11)
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Then the time-evolution operator writes,

𝑈(𝑡, 𝑡0) = 𝑒−
𝑖
ℎ̄
𝐻0(𝑡−𝑡0)

[︁
1 − 𝑖

ℎ̄

∫︁ 𝑡

𝑡0

𝑛(𝑡′ − 𝑡0)𝑉𝑒𝑥𝑡(𝑡
′)d𝑡′

]︁
(A.12)

Obsersable 𝐴(𝑡)

⟨𝐴(𝑡)⟩ =
∑︁
𝑛

𝑃𝑛 ⟨𝜑𝑛(𝑡)|𝐴|𝜑𝑛(𝑡)⟩ (A.13)

The deviation is,

⟨𝐴⟩ − ⟨𝐴0⟩ = − 𝑖

ℎ̄

∫︁ 𝑡

𝑡0

⟨[𝐴(𝑡), 𝑛(𝑡′)]⟩0 𝑉𝑒𝑥𝑡(𝑡
′)d𝑡′ (A.14)

Note that,

⟨[𝐴(𝑡), 𝑛(𝑡′)]⟩0 = ⟨[𝐴(𝜏), 𝑛(0)]⟩0 (A.15)

where 𝜏 = 𝑡− 𝑡′ > 0, and the retarded linear response function (susceptibility) is,

𝜒𝐴𝑛(𝜏) = − 𝑖

ℎ̄
Θ(𝜏) ⟨[𝐴(𝜏), 𝑛]⟩0 (A.16)

Apparently, Θ(𝜏) = 0 for 𝜏 < 0 but Θ(𝜏) = 1 for 𝜏 > 0. Then,

⟨𝐴(𝑡)⟩1 = ⟨𝐴(𝑡)⟩ − ⟨𝐴(0)⟩ =

∫︁ 𝑡−𝑡0

0

𝜒𝐴𝑛(𝜏)𝑉𝑒𝑥𝑡(𝑡− 𝜏)d𝜏 (A.17)

Add a periodic time dependence to the perturbation as,

𝑉𝑒𝑥𝑡(𝑡) = 𝑉𝜔𝑒
−𝑖𝜔𝑡 + c.c. =

∫︁ ∞
−∞

𝑉 (𝜔)𝑒−𝑖𝜔𝑡
d𝜔

2𝜋
(A.18)

where

𝑉 (𝜔) =

∫︁ ∞
−∞

𝑉𝑒𝑥𝑡(𝑡)𝑒
𝑖𝜔𝑡d𝑡 (A.19)

To make sure 𝑉𝑒𝑥𝑡(𝑡) = 0 when 𝑡 = −∞,

𝑉𝑒𝑥𝑡(𝑡) = 𝑉𝜔𝑒
−𝑖(𝜔+𝑖𝜂)𝑡 + c.c. (A.20)
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Rewrite Eq. A.17 as,

⟨𝐴(𝑡)⟩1 = ⟨𝐴(𝜔)⟩1 𝑒
−𝑖(𝜔+𝑖𝜂)𝑡 + c.c. (A.21)

where,

𝐴1(𝜔) = 𝜒𝐴𝑛(𝜔)𝑉𝜔 (A.22)

and

𝜒𝐴𝑛(𝜔) = − 𝑖

ℎ̄
lim
𝜂→0

∫︁ ∞
0

⟨[𝐴(𝜏), 𝑛]⟩ 𝑒𝑖(𝜔+𝑖𝜂)𝜏d𝜏 (A.23)

The commutator,

⟨[𝐴(𝜏), 𝐵]⟩0 =
∑︁
𝑚,𝑛

𝑃𝑚(𝑒𝑖𝜔𝑚𝑛𝜏𝐴𝑚𝑛𝐵𝑛𝑚−𝑒𝑖𝜔𝑛𝑚𝜏𝐵𝑚𝑛𝐴𝑛𝑚) =
∑︁
𝑚,𝑛

(𝑃𝑚−𝑃𝑛)𝑒𝑖𝜔𝑚𝑛𝜏𝐴𝑚𝑛𝐵𝑛𝑚

(A.24)

The response function,

𝜒𝐴𝐵(𝜔) =
1

ℎ̄

∑︁
𝑛𝑚

𝑃𝑚 − 𝑃𝑛

𝜔 − 𝜔𝑛𝑚 + 𝑖𝜂
𝐴𝑚𝑛𝐵𝑛𝑚. (A.25)

Separate Eq. A.25,

lim
𝜂→0

1

𝜔 − 𝑦 + 𝑖𝜂
= 𝒫 1

𝜔 − 𝑦
− 𝑖𝜋𝛿(𝜔 − 𝑦), (A.26)

where 𝒫 is the Cauchy principle value.

Polarization of electrons .

𝑈𝑒𝑥𝑡(r, 𝑡) = 𝑈𝑒𝑥𝑡(q, 𝜔)𝑒𝑖(q·r−𝜔𝑡) + c.c. (A.27)

where the 𝑈𝑒𝑥𝑡(q, 𝜔) = 𝜖(q, 𝜔)𝑈(q, 𝜔) Note the real part and imaginary part of di-

electric function obey the Kramers-Kronig relations,

𝜖1(q, 𝜔) = 1 +
1

𝜋
𝒫
∫︁ ∞
−∞

𝜖2(q, 𝜔
′)

𝜔′ − 𝜔
𝑑𝜔′ (A.28)

80



Meanwhile,

𝜖2(q, 𝜔) = − 1

𝜋
𝒫
∫︁ ∞
−∞

𝜖1(q, 𝜔
′) − 1

𝜔′ − 𝜔
𝑑𝜔′ (A.29)

Equivalently,

𝜖1(q, 𝜔) = 1 +
2

𝜋
𝒫
∫︁ ∞
0

𝜔′
𝜖2(q, 𝜔

′)

𝜔′2 − 𝜔2
𝑑𝜔′ (A.30)

Imaginary part,

𝜖2(q, 𝜔) = −2𝜔

𝜋
𝒫
∫︁ ∞
0

𝜖1(q, 𝜔
′) − 1

𝜔′2 − 𝜔2
𝑑𝜔′ (A.31)

Now we try to derive the longitudinal dielectric function. One-electron Hamiltonian

(Ref. [25], pp.320),

𝐻0 = − ℎ̄
2∇2

2𝑚
+ 𝑉 (r) (A.32)

The perturbation of the potential energy,

𝑈(r, 𝑡) = 𝑈0𝑒
𝑖(q·r−𝜔𝑡) + c.c. (A.33)

The electrostatic potential corresponding to the perturbation is 𝜑(r, 𝑡) = 𝑈(r,𝑡)
−𝑒 . The

electric field, is,

E = −∇𝜑 =
∇𝑈(r, 𝑡)

𝑒
=
𝑖𝑞𝑈0

𝑒
𝑒𝑖(q·r−𝜔𝑡)ê + c.c. (A.34)

The Hamiltonian becomes,

𝐻 = 𝐻0 + 𝑈0𝑒
𝑖(q·r−𝜔𝑡) + 𝑈*0 𝑒

−𝑖(q·r−𝜔𝑡) (A.35)

The transition probability based on the Fermi’s golden rule,

𝑃𝛽←𝛼 =
2𝜋

ℎ̄
|
⟨︀
𝜑𝛽|𝑈0𝑒

𝑖q·r|𝜑𝛼

⟩︀
|2𝛿(𝐸𝛽 − 𝐸𝛼 − ℎ̄𝜔)

𝑃𝛼←𝛽 =
2𝜋

ℎ̄
|
⟨︀
𝜑𝛼|𝑈0𝑒

−𝑖q·r|𝜑𝛽

⟩︀
|2𝛿(𝐸𝛼 − 𝐸𝛽 + ℎ̄𝜔)

(A.36)
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The transition rate,

𝑊 (q, 𝜔) = 𝑔𝑠
2𝜋

ℎ̄

∑︁
𝛼𝛽

|
⟨︀
𝜑𝛽|𝑈0𝑒

𝑖q·r|𝜑𝛼

⟩︀
|2

×
[︁
𝛿(𝐸𝛽 − 𝐸𝛼 − ℎ̄𝜔)𝑓(𝐸𝛼)(1 − 𝑓(𝐸𝛽)) − 𝛿(𝐸𝛽 − 𝐸𝛼 + ℎ̄𝜔)𝑓(𝐸𝛽)(1 − 𝑓(𝐸𝛼))

]︁
(A.37)

where 𝑔𝑠 is the spin degeneracy. The energy dissipated per unit time in volume 𝑉 is,∫︁
𝑉

J · Edr =

∫︁
𝑉

[𝜎(q, 𝜔)𝐸0𝑒
𝑖(q·r−𝜔𝑡) + c.c.][𝐸0𝑒

𝑖(q·r−𝜔𝑡) + c.c.]dr

= 2𝜎1(q, 𝜔)
𝑞2

𝑒2
|𝑈0|2𝑉 = ℎ̄𝜔𝑊 (q, 𝜔)

(A.38)

The current density satisfies,
𝜕D

𝜕𝑡
=
𝜕E

𝜕𝑡
+ 4𝜋J (A.39)

where D = 𝜖E and J = 𝜎E

𝜎1(q, 𝜔) =
1

2

𝑒2

𝑞2
ℎ̄𝜔𝑊 (q, 𝜔)

|𝑈0|2𝑉
(A.40)

The imaginary part of dielectric constant is,

𝜖2(q, 𝜔) =
4𝜋

𝜔
𝜎1(q, 𝜔) =

2𝜋ℎ̄𝑒2

𝑞2
1

𝑉

𝑊 (q, 𝜔)

|𝑈0|2

=
4𝜋2𝑒2

𝑞2
𝑔𝑠
∑︁
𝛼𝛽

|
⟨︀
𝜑𝛽|𝑒𝑖q·r|𝜑𝛼

⟩︀
|2

×
[︁
𝛿(𝐸𝛽 − 𝐸𝛼 − ℎ̄𝜔)𝑓(𝐸𝛼)(1 − 𝑓(𝐸𝛽)) − 𝛿(𝐸𝛽 − 𝐸𝛼 + ℎ̄𝜔)𝑓(𝐸𝛽)(1 − 𝑓(𝐸𝛼))

]︁
(A.41)
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Using the Kramers-Kronig relation, we have,

𝜖1(q, 𝜔) = 1 +
1

𝜋
𝒫
∫︁ ∞
−∞

𝜖2(q, 𝜔
′)

𝜔′ − 𝜔
d𝜔′

= 1 +
4𝑔𝑠𝜋𝑒

2

𝑞2
1

𝑉

∑︁
𝛼𝛽

[︂
| ⟨𝜑𝛽|𝑒𝑖q·r|𝜑𝛼⟩ |2

𝐸𝛽 − 𝐸𝛼 − ℎ̄𝜔 − 𝑖𝜂
𝑓(𝐸𝛼)(1 − 𝑓(𝐸𝛽))

− | ⟨𝜑𝛽|𝑒𝑖q·r|𝜑𝛼⟩ |2

𝐸𝛽 − 𝐸𝛼 + ℎ̄𝜔 − 𝑖𝜂
𝑓(𝐸𝛽)(1 − 𝑓(𝐸𝛼))

]︂ (A.42)

Long wavelength limit . When q → 0, the matrix element,

⟨︀
𝜑𝛽|𝑒𝑖q·r|𝜑𝛼

⟩︀
= 𝑖q · ⟨𝜑𝛽|r|𝜑𝛼⟩

=
ℎ̄

𝑚

q · ⟨𝜑𝛽|p|𝜑𝛼⟩
𝐸𝛽 − 𝐸𝛼

(A.43)

due to equality,

[𝐻0, r] = −𝑖ℎ̄p/𝑚. (A.44)

𝜖(0, 𝜔) = 1 +
4𝑔𝑠𝜋𝑒

2

𝑚2

1

𝑉

∑︁
𝛼𝛽

| ⟨𝜑𝛽|ê · p|𝜑𝛼⟩ |2

[(𝐸𝛽 − 𝐸𝛼)/ℎ̄]2

[︁ 𝑓(𝐸𝛼)(1 − 𝑓(𝐸𝛽))

𝐸𝛽 − 𝐸𝛼 − ℎ̄𝜔 − 𝑖𝜂
− 𝑓(𝐸𝛽)(1 − 𝑓(𝐸𝛼))

𝐸𝛽 − 𝐸𝛼 + ℎ̄𝜔 − 𝑖𝜂

]︁
(A.45)

Static limit . The static limit considering 𝐸(k) = ℎ̄2𝑘2/2𝑚 and free-electron gas,

𝜖(𝑞) = 1 +
4𝜋𝑔𝑠𝑒

2

𝑞2
1

𝑉

∑︁
k

𝑓k − 𝑓k+q

𝐸(k + q) − 𝐸(k) − 𝑖𝜂
(A.46)

which is the so-called Lindhard dielectric function for the free electron gas. By some

treatment, the Lindhard dielectric function writes[45],

𝜖(𝑞) = 1 +
1

2

𝑘2𝑇𝐹

𝑞2
+

1

2

𝑘2𝑇𝐹

𝑞2
𝑘𝐹
𝑞

(︂
1 − 𝑞2

4𝑘2𝐹

)︂
ln

⃒⃒⃒⃒
2𝑘𝐹 + 𝑞

2𝑘𝐹 − 𝑞

⃒⃒⃒⃒
(A.47)
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Appendix B

Anisotropic effective mass of electrons

Near the band edge, the electronic energy can be expanded by 𝜖𝑛k = 𝜖0+ℎ̄
2𝑚*−1𝑖𝑗 ∆𝑘𝑖∆𝑘𝑗/2,

where 𝜖0 is band extreme and k𝑖 is the wavevector in Cartesian coordinate. The in-

verse of the effective mass is given by,

𝑚*−1𝑖𝑗 =
2

ℎ̄2
𝜕2𝜖𝑛𝑘
𝜕𝑘𝑖𝜕𝑘𝑗

(B.1)

To calculate the effective mass tensor, the knowledge of eigenvalues of electronic states

near the band extreme is required. A non-self-consistent calculation is performed on

a 5 x 5 x 5 uniform 𝑘-mesh centered at the band minimum (in this work it’s at L

point in the first Brillouin zone both for conduction band and valence band). Then a

two-dimensional five-point stencil under a finite difference approximations is chosen

for the calculation of the second derivative of energy with respect to wavevector. The

coefficients used in the calculation are as follows[2],

𝜕2𝜖𝑛k
𝜕𝑘2𝑖

≈ −𝐸−2 + 16𝐸−1 − 30𝐸0 + 16𝐸1 − 𝐸2

12∆2
∼ 𝑂(∆4)

𝜕2𝜖𝑛k
𝜕𝑘𝑖𝜕𝑘𝑗

⃒⃒⃒⃒
𝑖 ̸=𝑗

≈ 1

600∆2

[︁
44 (𝐸2,2 + 𝐸−2,−2 + 𝐸2,−2 + 𝐸−2,2)

− 63 (𝐸1,−2 + 𝐸−1,2 + 𝐸−2,1 + 𝐸2,−1)

+ 63 (𝐸−1,−2 + 𝐸1,2 + 𝐸−2,−1 + 𝐸2,1)

+ 74 (𝐸−1,−1 + 𝐸1,1 + 𝐸−1,1 + 𝐸1,−1)
]︁
∼ 𝑂(∆4)

(B.2)
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where ∆ is the spacing of the 𝑘 mesh and calculated 𝐸𝑖𝑗 the energy on the 𝑘 point

with a offset of 𝑖× ∆ in 𝑘𝑖 direction and 𝑗 × ∆ in 𝑘𝑗 direction.

We then take the inverse of 𝑚*−1𝑖𝑗 to obtain effective mass tensor, which is a 2nd-

order tensor. The principle values of a 2nd-order tensor is the eigenvalues of the

tensor. Those principle values are actually referred to as the so-called longitudinal

effective mass and transverse electron/hole effective mass. Meanwhile, the principle

axes is determined by the eigenvectors. The eigenvectors 𝑖.𝑒. the principal axes of the

effective mass tensor of PbTe is as follows. For valence band,

e1 =

⎛⎜⎜⎜⎝
0.577

−0.577

−0.577

⎞⎟⎟⎟⎠ , e2 =

⎛⎜⎜⎜⎝
−0.049

−0.730

0.681

⎞⎟⎟⎟⎠ , e3 =

⎛⎜⎜⎜⎝
−0.815

−0.365

−0.450

⎞⎟⎟⎟⎠ . (B.3)

For conduction band,

e1 =

⎛⎜⎜⎜⎝
0.811

0.487

0.324

⎞⎟⎟⎟⎠ , e2 =

⎛⎜⎜⎜⎝
0.095

−0.655

0.750

⎞⎟⎟⎟⎠ , e3 =

⎛⎜⎜⎜⎝
−0.577

0.577

0.577

⎞⎟⎟⎟⎠ . (B.4)

The calculated principal values of the effective mass tensor is shown in Table B.2,

where 𝑚*𝑣𝑡 and 𝑚*𝑣𝑙 are the transverse and longitudinal effective of valence band and

𝑚*𝑐𝑡 and 𝑚*𝑐𝑙 for conduction band. We notice that the experiment (under 4 K tem-

Table B.1: The longitudinal and transverse effective mass of PbTe from calculation
and experiment[31]

𝑚*𝑣𝑡 𝑚*𝑣𝑙 𝑚*𝑐𝑡 𝑚*𝑐𝑙
Calculation -0.190 -0.466 0.089 0.185
Experiment -0.022 ± 0.003 -0.31 ± 0.05 0.024 ± 0.003 0.24 ± 0.05

perature) shows a strong mass anisotropy (𝑚𝑙/𝑚𝑡 ≥ 10 both for conduction band

minimum and valence band maximum), which is not captured by the first-principles

calculation. This might be due to the fact that the LDA pseudopotential cannot

produce an accurate band edge profile and more advanced calculation scheme, e.g.

86



quasiparticle self-consistent GW, should be adopted[68]. In fact, the effective mass

of PbTe is highly sensitive to temperature[42]. Since we focus on transport proper-

ties at and above room temperature, it’s important to compare with measurement

of the effective mass at room temperature. The density of states effective mass and

conductivity are closely related to the transport properties, given by,

𝑚*DOS =
(︀
𝑚*𝑙𝑚

*2
𝑡

)︀1/3 (B.5)

𝑚*cond =
3

1/𝑚*𝑙 + 2/𝑚*𝑡
(B.6)

Table B.2: The DOS and conductivity effective mass of PbTe from calculation and
experiment[42]

𝑚*𝑣,DOS 𝑚*𝑣, cond 𝑚*𝑐,DOS 𝑚*𝑐, cond
Calculation -0.256 -0.237 0.114 0.108

Experiment (300 K) -0.250 -0.110 0.300 0.103
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Appendix C

Phonon thermal conductivity from

first principles

The heat flux by phonons is caused by the deviation of the distribution function from

equilibrium in an isotropic material[7],

J𝑝ℎ =
1

Ω𝑁𝜈q

∑︁
𝜈q

ℎ̄𝜔𝜈qv𝜈q (𝑛𝜈q − 𝑛𝜈q,0) . (C.1)

Considering the Fourier’s law J𝑝ℎ = −𝜅𝑝ℎ∇r𝑇 , we find that the expression for phonon

thermal conductivity from linearized Boltzmann transport equation under the relax-

ation time approximation is,

𝜅𝛼𝛽𝑝ℎ =
1

Ω𝑁𝜈q

∑︁
𝜈q

(ℎ̄𝜔𝜈q)2

𝑘𝐵𝑇 2
𝑛𝜈q (𝑛𝜈q + 1)v𝛼

𝜈qv
𝛽
𝜈q𝜏𝜈q, (C.2)

where 𝑁q is number of the 𝑞 point. The calculation of the thermal conductivity

requires the phonon dispersion relation, which contains the information of phonon

frequency and group velocity. We also need to calculate the relaxation time and this

can be calculated by,

1

𝜏𝜈q
=

1

𝑁q

⎛⎜⎜⎝∑︁
𝜈′𝜈′′
q′q′′

+Γ𝜈𝜈′𝜈′′

qq′q′′ +
1

2

∑︁
𝜈′𝜈′′
q′q′′

−Γ𝜈𝜈′𝜈′′

qq′q′′

⎞⎟⎟⎠ . (C.3)
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The term ±Γ𝜈𝜈′𝜈′′

qq′q′′ corresponds to the phonon absorption/emission process,

±Γ𝜈𝜈′𝜈′′

qq′q′′ =
ℎ̄𝜋

4𝜔𝜈q𝜔𝜈′q′𝜔𝜈q′′

×
⃒⃒⃒
±𝑉 𝜈𝜈′𝜈′′

qq′q′′

⃒⃒⃒2 ⎡⎣ 𝑛𝜈′q′ − 𝑛𝜈′′q′′

𝑛𝜈′q′ + 𝑛𝜈′′q′′ + 1

⎤⎦ 𝛿 (𝜔𝜈q ± 𝜔𝜈′q′ − 𝜔𝜈′′q′′) ,

(C.4)

where ±𝑉 𝜈𝜈′𝜈′′

qq′q′′ is the scattering matrix element. To calculate the thermal conductivity,

we use a cubic supercell that contains 64 atoms to obtain scattering matrix in the

formalism proposed by Ref.[14].
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