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Abstract

Understanding phonon and electron transport is of great significance for designing
efficient solid-state devices such as transistors, laser diodes and thermoelectric energy
converters. The structural randomness is inevitable in solid-state devices, and it is
often regarded as the undesirable scattering source for phonons and electrons. This
thesis studies manipulating phonon and electron flow using structural randomness
via mode-resolved Green’s function calculations and pump-probe optical characteri-
zations.

Interface roughness is a common type of randomness in heterostructures, which
strongly affects electron and phonon transport across interfaces. We find that atom-
ically rough interfaces can scatter short-wavelength electrons and assist the trans-
mission between mismatched valleys. The contact resistance is reduced by over an
order of magnitude. Our study provides new insights on the conventional wisdom to
improve the interfacial transport using graded interfaces. We also use the atomistic
Green’s function to simulate phonon transport across rough interfaces to show that
the basic assumption that phonons lose memories in the often-used diffuse phonon
scattering model is questionable.

The coherent backscattering of waves in disordered structures can lead to Ander-
son localization, where the waves are spatially localized and cannot propagate. An-
derson localization has been observed in electronic, photonic and acoustic systems.
However, observing its impact on heat conduction is challenging due to the broad-
band nature and three-dimensional transport of phonons. We use the aperiodicity
as a type of randomness to enhance phonon Anderson localization. Our calculation
predicts that aperiodic Si/Si0.2Ge0.8 superlattice can induce coherent backscattering
for low-frequency phonons and limit the contribution to transport of high-frequency
phonons. The interferences among scattered low-frequency phonons lead to a peak
in the thermal conductivity versus length curve, a characteristic feature of phonon
Anderson localization. Using frequency-domain thermoreflectance, we validate our
theoretical predictions and find that the phonon Anderson localization exists up to
200 K. Our findings provide an efficient approach to localize phonons at moderate
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temperatures using randomness.
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Chapter 1

Introduction

The miniaturization of electronics has enabled the average number of transistors on a

chip to double every 18 months. Nowadays, the characteristic length scales of transis-

tors are well below 10 nm. The phonon and electron transport in nanostructures are

fundamentally different from their in their bulk counterparts, as the imperfections,

interfaces and boundaries in nanostructures induce strong scatterings and lead to size-

and structure-dependent transport. When the characteristic length of the system and

the wavelength are comparable, the wave natures of electrons and phonons start to

play an important role in transport. In the phonon wave transport regime, interfer-

ence among scattered waves within the coherence length creates new opportunities in

manipulating the phonon transport properties via engineering the structures.

Past studies on the size-dependent transport properties, especially phonon heat

conduction, have mostly been based on the classical size effect picture[1, 2]. For an

intrinsic bulk material, the phonon mean free path Λ is predominantly determined by

the three-phonon scattering lifetime 𝜏 via Λ = 𝑣𝑔𝜏 , where 𝑣𝑔 is the group velocity. In

a bulk material, the intrinsic phonon mean free path generally has a wide spectrum.

For example, it ranges from the order of 1 nm to the order of 10 𝜇m in bulk Si[3].

In polycrystalline materials with grain sizes at nanoscale, phonons with long intrinsic

mean free paths travel ballistically inside the grain[4] and eventually becomes scat-

tered by the boundary. Resultantly, their mean free paths become limited by the

grain size. In contrast, phonons with short intrinsic mean free paths travel diffusively
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and the effect of boundary scattering is much weaker. The phonon thermal conduc-

tivity based on the phonon gas model can be expressed by, 𝜅 ∝ 1
3𝑐𝑣𝑔Λ, where 𝑐 is

the volumetric specific heat. Therefore, the phonon thermal conductivity decreases

with decreasing grain sizes. The size effect in phonon heat conduction manifests it-

self in other systems. For instance, thermal conductivity decreases with decreasing

diameters in nanowires[5] or with decreasing thickness in thin films[6].

The interface scattering is the fundamental reason for the classical size effect. The

interface (boundary) scattering rate is often simply taken as 1⇑𝜏bd =
𝑣𝑔
𝐿 with 𝐿 being

the geometry size, where the angular, wavelength and phase dependence of phonon

boundary scattering are entirely neglected[7]. When evaluating the transmittance and

reflectance through interfaces, the interface scattering is often considered as diffuse,

i.e., the transmittance is isotropic (angle-independent) and the phases of scattered

phonon waves are considered completely randomized. In addition to the assumption

of diffuse scattering, Swartz and Pohl proposed the famous diffuse mismatch model by

further assuming that the transmittance from one side equals to the reflectance from

the other side, as they argue that the diffuse phonon scattering makes the phonon

lose its memory of origin[8].

In solid-state devices consisting of multiple interfaces such as transistors laser

diodes and thermoelectric energy converters, as illustrated in Fig. 1-1, interface scat-

tering is one of the dominating phonon scattering mechanisms and accurately describ-

ing the interface scattering is crucial for understanding and engineering the thermal

resistance of the device. However, the commonly held assumption of perfectly diffuse

boundary scattering and neglecting phonon phase information are questionable. A

perfect interface has an effective thickness of one lattice spacing 𝑎, which strongly

interacts with phonons with wavelength 𝜆 ∼ 𝑎 (wavevector amplitude 𝑞 ∼ 2𝜋
𝑎 ). It

can scatter phonons with different wavelengths with different scattering strength.

Moreover, interface scattering is mostly elastic. After being scattered by such static

scattering centers, phonons’ phases strictly speaking are not randomized. To prop-

erly describe the interface scattering, the wave nature of phonon has to be considered.

The interface roughness is a common type of structural disorder in practical devices.
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Figure 1-1: Interfacial transport for phonon and electron are important in a variety
of applications. Reprinted from Ref. [9].

It broadens the characteristic width of interface from 𝑎 to a larger value 𝛿, which

changes how the interface scattering explicitly depends on the wavelength, as shown

in Fig. 1-2. The existence of multiple interfaces further complicates the superposition

of scattered phonon waves.

The interface also scatters electrons and induces a large interface resistance[10].

Similar to the phonon interface scattering, the wave properties of electrons must

be included when studying the electron interface scattering, as the characteristic

length scale of the interface is comparable to electron wavelengths. Therefore, study-

ing the interface scattering for phonons and electrons are both of great significance.

What’s more, resolving how the interface roughness impacts the interface scatter-

ing for phonon and electron is necessary to understand the interfacial transport in

practical devices.

Elastic phonon scattering at a single interface maintains the phase (i.e., the way

phase evolves with time keeps unchanged). For multiple interfaces, e.g., in superlat-

tices, the reflected and transmitted waves at each interface interfere with each other.

The interference can alter the phonon eigenvectors (i.e., how each atom vibrates

according to a vibrational normal mode) and lead to a different phonon dispersion

relation from the bulk material. Although phonon is always partially reflected by a
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Figure 1-2: The phonon and electron transport through a rough interface. The
interface roughness has a characteristic width 𝛿.

single interface, phonon interference in superlattices consisting of multiple interfaces

gives rise to passing bands (phonon traveling through interface without interface scat-

tering) and stop bands (phonon propagation is forbidden)[11, 12]. On the other hand,

the inelastic scattering, such as three-phonon scattering, can destroy the interferences.

In particular, when the inelastic mean free path Λin is much larger than the phonon

coherence length 𝑙c, which is the characteristic length scale for phonon interferences,

the phonon coherence is maintained even after multiple elastic scattering events.

Experimentally, coherent phonon heat conduction, where the phonon keeps its

phase information in the transport process, has been observed in GaAs/AlAs super-

lattices with changing number of periods and fixed period length[13]. Below 150 K,

the mean free paths for most phonons are found to be much larger than the sample

length. As a result, the phonon wave travels coherently from one side to the other

side and its phase is maintained. At higher temperatures, the phonon mean free paths

are reduced and the fraction for diffusive phonons increases. The thermal transport

in this case is partially coherent. The coherent phonon transport in superlattices

suggests that phonon interference is crucial in determining the transport property.

The gapped phonon states (inside stop bands) in superlattices due to interference

are intrinsically localized (evanescent waves with imaginary wavevectors) thus do not

directly contribute to transport. When introducing disorders to the nanostructures,

another type of localization can be induced by phonon interferences, called Ander-

son localization. Unlike in periodic superlattices, the interfering wave components

in disordered system do not have any spatial periodicity. Additionally, the effective
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transmittance for an incident phonon decays exponentially with length. Anderson

localization was first found in Anderson’s seminal work in 1958[14]. It has been exper-

imentally found in photonic[15], electronic[16], acoustics[17], cold-atom systems[18].

However, the phonon Anderson localization is much less studied experimentally due

to the broadband nature and three-dimensional transport of phonons.

Recently, signatures of phonon Anderson localization has been found in GaAs/AlAs

superlattice with random dots inserted at the interfaces[19]. The interface roughness

strongly scatters short-wavelength phonons, which makes them minimally contribute

to the transport. The random dots scatter phonons with middle and long wavelengths

and the interferences among the scattered waves causes exponentially decaying trans-

mittance with the sample length. Accordingly, the thermal conductivity decreases

with sample length below 50 K. The transmittance is the squared amplitudes of the

summation of all possible scattering waves (complex quantities). As the disordered

system become longer, although the number of possible scattering paths for a phonon

to propagate from one side to the other side of the sample increases rapidly, the

transmittance is not necessarily increasing as the summation of scattered waves can

be either positive or negative. On the other hand, for any forward scattering path, its

time-reversal path is also a possible scattering path. Together, two time-reversal paths

form constructive interference, and along the combined path the phonon travels back

to exactly where it starts, i.e., the phonon wave is spatially localized. It turns out that

as the system length increases, it is always easier to find interfering paths that make

phonon circle back than the paths that let phonon travel through the sample[20].

Consequently, the transmittance becomes smaller with longer sample length. The

phonon Anderson localization provides a new way to manipulate phonons, which can

be useful in low-thermal-conductivity applications such as thermoelectrics, as well as

in quantum information science to prevent phonon from interacting with spin and

causing quantum decoherence[21]. However, there is no report on phonon Ander-

son localization at moderate temperatures, which greatly limits the applications of

Anderson localization.

From above-mentioned examples, we clearly see that the geometry of the struc-

21



tures has a great impact both on phonon and electron transport, which also creates

new opportunities to manipulate phonon and electron transport via structural en-

gineering. The classical size effect without invoking the wave effect describes the

size-dependent transport when phases are fully randomized by interface scattering.

However, for phonon and electron transport through interfaces and disordered struc-

tures, the wave effect plays a significant role. The lacking understanding of how the

interface roughness impacts the phonon and electron transport substantially limits the

possibilities of improving phonon and electron transport. Furthermore, for phonon

transport through disordered structures, the phases of phonon waves cannot be over-

looked. The interferences among scattered waves in disordered structures causes

phonon Anderson localization. The Anderson localization provides a new approach

to manipulate phonons using disorders, yet has only been achieved at extremely low

temperatures. To make Anderson localization a practical strategy to control phonons,

more structural design and experimental tests are needed to push up the temperature

needed to achieve phonon Anderson localization.

This thesis focuses on the interplay between structural randomness and the wave

properties of phonon and electron, including wavelengths, phases, interferences. It

provides the practical strategies to engineer phonon and electron wave transport using

randomness via mode-resolved Green’s function calculations and pump-probe optical

characterizations.

1.1 Phonon transport regimes at nanoscale

Several important characteristic length scales divide the phonon transport regimes

into ballistic-diffusive transport regime, coherent transport regime and localized trans-

port regime. We will introduce those length scales in the following.

1.1.1 Characteristic length scales

In the transport process, phonon propagation is accompanied by various types of

scatterings. The elastic scattering processes that conserve incident phonon’s energy
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include impurity scattering, alloy scattering, interface scattering, boundary scattering

etc.. In contrast, the inelastic scattering processes that do not conserve the phonon

energy include three-phonon scattering, phonon-electron scattering, etc.. In a system

where multiple scattering mechanisms coexist, the total scattering rate can be eval-

uated by invoking the Matthiessen’s rule, which states that the total scattering rate

is the summation of all types of scattering rates expressed by 1
𝜏 = 1

𝜏impurity
+ 1

𝜏alloy
+⋯.

Note that the phonon phases and phonon interferences are entirely neglected in this

treatment.

The phonon mean free path Λ describe the average traveling distance between

two consecutive scattering events. Specifically, the elastic scattering mean free path

Λe = 𝑣𝑔𝜏e and the inelastic scattering mean free path Λin = 𝑣𝑔𝜏in are determined by

the elastic and inelastic scattering lifetime, respectively. The recent process in first-

principle calculation of the phonon mean free paths has provided a reliable way to

acquire the inelastic phonon mean free path[22, 3, 23] and elastic phonon mean free

path accurately[24, 25, 26, 27].

For an inelastic scattering process, such as three-phonon interaction (two phonons

scatter and emit a new phonon or one phonon emits two new phonons), the phonons

are annihilated or created, and hence their phase information is completely destroyed

after one scattering event. The coherence length 𝑙c is defined to describe the distance

within which the temporal behavior of phonon phases remains the same. The Thouless

length is used as a measure of coherence length for electron transport, where 𝑙c =

(𝐷𝜏in)
1⇑2 and 𝐷 is the diffusivity[28, 29]. For phonon transport, we have 𝐷 =

𝑣𝑔Λ
3 ,

where Λ is the phonon mean free path that incorporate all types of scattering processes

and satisfies, Λ−1 = Λ−1
e +Λ−1

in . Therefore, the phonon coherence length can be obtained

by, 𝑙𝑐 =
⌈︂

ΛΛin⇑3[2]. For a system with strong inelastic scattering (Λin ≪ Λe), we have

𝑙𝑐 ≈ Λin⇑
⌋︂

3 ≪ Λe, whereas for a system with strong elastic scattering (Λin ≫ Λe),

we have 𝑙𝑐 ≈
⌈︂

ΛeΛin⇑3 ≫ Λe. That is to say, in elastic scattering dominated system,

phonons can maintain their coherence even far beyond the mean free path, as the

elastic scattering generally only partially destroys the phase information of phonons.
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1.1.2 Ballistic-diffusive transport

The phonon thermal conductivity 𝜅 = 𝐺 ⋅𝐿, where 𝐺 is the thermal conductance and

𝐿 is the total length. According to the Landauer-Büttiker formalism[10], the phonon

thermal conductance can be defined by,

𝐺 =
1

2𝜋𝐴 ∫
∞

0
ℎ̵𝜔Θ(𝜔)

𝜕𝑓BE

𝜕𝑇
𝑑𝜔 (1.1)

where 𝐴 is the cross-sectional area, Θ(𝜔) = 1
𝑁k
∥

∑k∥
tr (t†(𝜔,k∥)t(𝜔,k∥)) is the phonon

transmission function, which describes the number of phonon conducting channels at

given frequency 𝜔, t(𝜔,k∥) is the phonon transmission matrix at given transverse

momentum k∥ and 𝑓BE is the Bose-Einstein distribution function. The Landauer-

Büttiker formalism suggests that the conductance is intimately related to the trans-

mission function Θ(𝜔)[30].

If we assume the phonon transmission function is frequency-independent Θ(𝜔) =

Θ⋅𝜏 , where Θ is the average transmission function when all transmission channels have

unity transmission probability and 𝜏 is a constant transmission probability (transmit-

tance). We have the conductance directly proportional to the transmittance 𝐺 ∝ 𝜏 .

Consider the transport across a short sample with length 𝑙. We denote the transmis-

sion from one side to the other side of this sample 𝜏1. If we double the length of the

sample and neglect any coherence effect on changing the transmittance, it is intuitive

to think that the effective transmittance is simply 𝜏1 × 𝜏1. However, such expression

is actually wrong as the multiple scattering process is ignored. The transmittance

through the sample with length 2𝑙 should be,

𝜏2 = 𝜏1𝜏1 + 𝜏1(1 − 𝜏1)
2𝜏1 + ⋅ ⋅ ⋅ =

𝜏 21
1 − (1 − 𝜏1)2

(1.2)

One can further generalize to the sample with length 𝑁𝑙,

𝜏𝑁 =
1

1 +𝑁 1−𝜏1
𝜏1

(1.3)
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Figure 1-3: The length dependence of thermal conductivity in ballistic-diffusive trans-
port regime.

The thermal conductivity of samples with length 𝐿 = 𝑁𝑙 can then be expressed

by,

𝜅∝ 𝜏𝑁 ⋅𝐿 =
Λ𝐿

Λ +𝐿
(1.4)

where Λ = 𝜏1
1−𝜏1

⋅𝑙 is the phonon mean free path. When 𝐿≫ Λ, the thermal conductivity

converges to a constant bulk value and the phonon transport is diffusive. On the

other hand, when 𝐿≪ Λ, the thermal conductivity 𝜅 ∝ 𝐿 and the phonon transport

is ballistic. In Fig. 1-3, we present the size dependence of the thermal conductivity

𝜅, where the thermal conductivity always increases with the system size. The size

dependence given by Eq. 1.4 is one example of classical size effect. Such transport

regime is called ballistic-diffusive transport.

The classical size effect based on the phonon particle picture has already been

widely studied. In this thesis, we are more interested in studying wave effect on

transport, which is much less explored. In the above analysis, the wave nature of

phonon is entirely overlooked, as we have explicitly assumed the that phonon trans-

port is incoherent, where after scattering phonons lost information about its previous

paths and such behavior can be regarded as random walk. One can also make analogy

to ray tracing in optics to understand the incoherent phonon transport[31].
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1.1.3 Coherent transport

The phonon transport is coherent within the coherence length. The reasons why co-

herent phonon transport has been mostly observed in short-period superlattices[13,

32] are as follows. At low temperatures, the elastic scattering dominates over the in-

elastic scattering, which makes coherence length Λ < 𝑙c < Λin. The short-wave-length

phonons are strongly scattered by the interface disorders as the mass-disorder scatter-

ing rate ∝ 𝜔4[33], while the long-wave-length phonons can travel across all interfaces

rather than being diffusively scattered by interfaces and losing their phases[13, 32].

As a result, phonon can travel coherently from one side to the other side of the sam-

ple. The transmittance remains a constant and so does the thermal conductance.

Hence, the thermal conductivity linearly increases with the total length, 𝜅∝ 𝐿.

One might argue that this is just the small 𝐿 limit in the classical ballistic-diffusive

transport (or simply the ballistic limit) given by Eq. 1.4. However, the classical

ballistic-diffusive transport assumes that phonon loses its phase entirely beyond the

length 𝑙 (𝑙 ≥ 𝑙𝑐). The classical ballistic-diffusive picture cannot properly describe the

transport below 𝑙 (or below 𝑙𝑐), where the coherence is important. Beyond the length

𝑙, the transport is fully incoherent, as the phase are completely randomized due to

multiple elastic scatterings and inelastic scatterings. On average phonon interference

has a negligible impact on transport.

At higher temperatures, the coherence length decreases due to reduced inelastic

mean free path Λin (three-phonon scattering rate ∝ 𝑇 ), the coherent transport gradu-

ally disappears. It is worth mentioning that accurate calculation of coherence length

is lacking thus it is difficulty to know exactly when the phonon phases and interfer-

ences can be neglected. To summarize, we can call the transport coherent within the

coherence length 𝑙𝑐.

1.1.4 Localized transport

When introducing random disorders into the short-period superlattices, as realized

in the experimental work by Luckyanova et. al.[19], the disorders not only strongly
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scatter phonons but induce strong interferences among the scattered waves. Consider

the transport from A to B inside a superlattice with doped random dots at interfaces,

as shown in the Fig. 1-4 (a). The calculation of probability needs to include all

possible scattering paths. For simplicity, we assume there are only two possible paths

and the transport is one-dimensional1. The probability of transition from A to B can

be expressed by,

𝑃𝐴→𝐵 = ⋃︀𝑢1 + 𝑢2⋃︀
2

= 𝑃1 + 𝑃2
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
classical

+2
⌈︂
𝑃1𝑃2cos (𝑘𝐿1 − 𝑘𝐿2)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
interference

(1.5)

The first term describes the classical random work paths, which are additive. The

second term describes the contribution from interference between different scattering

paths. In the incoherent transport regime discussed in Session 1.1.2, the interference

term does not contribute much. However, when the inelastic effect is weaker, the

interference term contributes more to the transport.

The probability of returning to the point A, 𝑃𝐴→𝐴, is also related to the summation

of all possible paths. The random disorders usually cause stronger enhancement of the

probability of coming back, known as the coherent backscattering[34]. If the degree

of disorder is even larger, there are paths that form loops and contribute substantially

in 𝑃𝐴→𝐴. In certain cases, the two possible paths are time-reversal to each other, and

they form constructive interference. Resultantly, we have the reflectance of unity,

𝑃𝐴→𝐴 = ⋃︀𝑢1 + 𝑢2⋃︀
2

=
1

4
⋅ ⋃︀𝑒𝑖𝑘𝐿 + 𝑒−𝑖𝑘𝐿⋃︀

= 1

(1.6)

as 𝐿 = 0. In other words, the wave is localized.

The Fig. 1-4 (b) describes an extreme case of localization. Generally, the re-

flectance quickly increases with the increasing system length, whereas the transmit-

1As shown in the Fig. 1-4, the actual scattering paths are not one-dimensional. For simple
mathematical demonstration, we assume all waves are plane waves moving along one dimension.
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Figure 1-4: (a) The random dots in the weak-disorder regime causes interferences
among scattered waves, which enhances chances of reflecting back, known as co-
herent backscattering. (b) The random dots in the strong-disorder causes stronger
interference. The two time-reversal paths make the phonon stays where it starts and
cannot propagate, known as Anderson localization.

tance behaves in the opposite way. In the localized transport regime, the transmission

function is exponentially decaying with system length Θ(𝜔) ∝ 𝑒−𝐿⇑𝜁 , where 𝜁 is the

decay length. As a consequence, the thermal conductivity satisfies,

𝜅∝ 𝐿𝑒−𝐿⇑𝜁 (1.7)

which peaks at 𝐿 = 𝜁. Such length dependence of thermal conductivity is a unique

feature of Anderson localization. The Anderson localization of phonons is an emerging

phenomenon due to wave interferences and provides new directions in controlling

phonon dynamics.

1.2 Interface scattering

The interface scatterings for phonon and electron are significantly affecting the phonon

and electron transport. At the interface, the incident electron/phonon can be trans-

mitted or reflected. Scattering matrix is often used to describe the probability for

different interface scattering processes. The nonequilibrium Green’s function calcu-

lation can be used to obtain the scattering matrix and the interface conductance for

phonon and electron[35].

28



1.2.1 Scattering matrix

We consider the scattering matrix for electron as an example and the scattering

matrix for phonon can be analogously defined. Denote 𝑢𝐿(+) and 𝑢𝑅(+) the forward

propagating state from the left side and the right side, respectively. As depicted in

Fig. 1-5, due to the scattering of the interface, the wavefunction of left side becomes,

𝑐𝐿 = 𝑢𝐿(+) +ℛ𝑢𝐿(−) (1.8)

and the propagating modes in right side can be expressed by,

𝑐𝑅 = 𝒯 𝑢𝑅(+) (1.9)

where the matrix ℛ and 𝒯 are the generalized reflection and transmission matrix.

The physical transmission and reflection matrices are obtained by normalizing these

matrices according to the current normal to the interface,

𝑡𝑅𝐿,𝑗𝑖 =

}︂
𝑣𝑅,𝑧,𝑗𝑎𝐿
𝑣𝐿,𝑧,𝑖𝑎𝑅

𝒯𝑗𝑖 (1.10)

𝑟𝐿𝐿,𝑗𝑖 =

}︂
𝑣𝐿,𝑧,𝑗
𝑣𝐿,𝑧,𝑖

ℛ𝑗𝑖 (1.11)

The transmission/reflection matrix element describes the ratio between the transmit-

ted/reflected current of mode 𝑗 and the incident current of mode 𝑖, both along the

interface normal. Note that the lattice constant along z direction is used to compute

the current for each mode, which is proportional to the velocity divided by the unit-

cell volume. In the following, we use the physical transmission and reflection matrix

to study the transmission and reflection probability. The scattering matrix 𝑆 that

describes the all scattering processes at an interface can be expressed by,

𝑆 =
⎛
⎜
⎝

𝑟𝐿𝐿 𝑡𝐿𝑅

𝑡𝑅𝐿 𝑟𝑅𝑅

⎞
⎟
⎠
. (1.12)
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Figure 1-5: The schematic for scattering states for an interface scattering problem.

With the help of the scattering matrix, the incoming and outgoing states normalized

by current are simply related via, 𝑢out = 𝑆𝑢in.

In particular, the transmission matrix element 𝑡𝑅𝐿,𝑗𝑖 is proportional to the Green’s

function element 𝐺𝑗𝑖 = ∐︀𝑢𝑗 ⋃︀ 𝐺̂ ⋃︀𝑢𝑖̃︀, where 𝐺̂ = (𝐸 − 𝐻̂ + 𝑖𝜂)−1 is the Green’s function

operator, 𝐻̂ is the Hamiltonian operator, ⋃︀𝑢𝑖̃︀ and ⋃︀𝑢𝑗̃︀ are the wavefunctions for

incident and transmitted electron in bra−ket notation (for phonon transport, ⋃︀𝑢𝑖̃︀ and

⋃︀𝑢𝑗̃︀ are the phonon eigenvectors). For a perfect interface, the transverse momentum

is conserved k𝑖,∥ = k𝑗,∥ and the scattering process is called specular transmission.

However, when interface disorders are introduced, such momentum conservation law

is no longer valid and the scattering process when k𝑖,∥ ≠ k𝑗,∥ is called nonspecular

(diffuse) transmission.

The nonspecular transmission can enhance the transmittance for phonon and elec-

tron. For instance, consider the phonon transport across a perfect interface with

large mismatch. The critical cone for transmission, i.e., the surface in the phonon

dispersion relations that separates the completely reflected phonon states and other

phonon states, is very narrow and phonon cannot escape outside the critical cone.

With interface disorders added, the phonon are allowed escape outside the critical

cone via nonspecular transmission, which largely enhances the total transmittance.

In this case, the disorders can actually reduce the interface resistance. Understanding

how the disordered structure determines the nonspecular transmittance can offer new

opportunities in optimizing the interfacial transport.
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1.2.2 Nonequilibrium Green’s function

Due to the intimate relation between the transmission matrix and the Green’s func-

tion, nonequilibrium Green’s function has been commonly used to study the phonon

and electron transport through interfaces[36, 37]. We introduce the nonequilibrium

Green’s function formalism for electron transport in the following and the formalism

for phonon transport can be similarly derived. The Green’s function method is a

nonperturbative approach capable of both weak-disorder and strong-disorder cases.

Also, it intrinsically incorporates all wave effects, which is important for the inter-

face scattering problem. The Green’s function for Schrödinger equation is defined to

satisfy the following equation2,

(︀(𝐸 + 𝑖𝜂) 𝐼 −𝐻(k∥)⌋︀𝐺(𝐸,k∥) = 𝐼 (1.13)

where 𝐻(k∥) is the Hamiltonian matrix, 𝜂 is an infinitesimal real number and 𝐼 is

the identity matrix. The Hamiltonian consists of three parts, left lead, device region

and right lead, where the two leads are essentially two reservoirs of electrons and the

electron travel between two reservoirs through the device region. In block-wise form,

the Hamiltonian matrix reads,

𝐻(k∥) =

⎛
⎜
⎜
⎜
⎜
⎝

𝐻𝐿 +Σ𝐿 𝐻𝐿𝐶 0

𝐻𝐶𝐿 𝐻𝐶 𝐻𝐶𝑅

0 𝐻𝑅𝐶 𝐻𝑅 +Σ𝑅

⎞
⎟
⎟
⎟
⎟
⎠

(1.14)

where Σ𝐿 and Σ𝑅 are self-energies for two lead regions. The transmission function at

given k∥, a measure of number of conducting channels, is given by,

Θ(𝐸,k∥) = tr )︀Γ𝐿(𝐸,k∥)𝐺(𝐸,k∥)Γ𝑅(𝐸,k∥)𝐺
†(𝐸,k∥)⌈︀ (1.15)

where Γ𝑅(𝐸,k∥) and Γ𝐿(𝐸,k∥) are coupling matrices related to the self-energies.

2We take electron transport for example and phonon transport can be similarly defined, except
that 𝐸 becomes 𝜔2.
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The conductance can be obtained by the Landauer-Büttiker formalism[35],

𝐺 = −
2𝑒2

ℎ𝐴 ∫
Θ(𝐸)

𝜕𝑓FD
𝜕𝐸

𝑑𝐸 (1.16)

where Θ(𝐸) = 1
𝑁k
∥

∑k∥
Θ(𝐸,k∥) is the transmission function and 𝑓FD is the Fermi-

Dirac distribution function. The spin degree of freedom is multiplied (no spin-orbital

coupling). Conventionally, 𝐺0 =
2𝑒2

ℎ is called the conductance quantum.

1.2.3 Interface resistance

The electrical interface resistance is the ratio between the electrochemical potential

difference and the current,

𝑅 =
∆Φ

𝐼
(1.17)

Note that the conductance given by Landauer-Büttiker formalism (Eq. 1.16) cannot

be directly used to compute the interface resistance. The reasons are as follows.

Consider a perfect bulk material with an imagined plane as an interface. The expected

interface resistance associated with the imaginary interface should be zero. However,

directly using Eq. 1.16 will give a finite value of interface resistance. This is because

Eq. 1.16 describes the conductance for the transport between two reservoirs that are

at different equilibrium state and have well-defined electrochemical potential, which is

conventionally regarded as a two-probe setup. However, near the interface, due to the

strong interface scattering, the electrons are far from equilibrium. For example, on the

left side of the interface, the right-moving electrons are those out of the left reservoir

(left lead), while the left-moving electrons can be those reflected by the interface or

those transmitted from the right reservoir (right lead). As a result, the electrochemical

potential cannot be rigorously defined near the interface. Nevertheless, we can still

compute the effective electrochemical potential by assuming that the local electron

population follows a Fermi-Dirac distribution.

The effective electrochemical potential energy on the left and right side of the
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interface 𝜇1 and 𝜇2 are,

𝜇1 = 𝜇𝐿 − (𝜇𝐿 − 𝜇𝑅)
𝐺

2𝑔𝐿

𝜇2 = 𝜇𝑅 + (𝜇𝐿 − 𝜇𝑅)
𝐺

2𝑔𝑅

(1.18)

where 𝜇𝐿 and 𝜇𝑅 are the electrochemical potential energies for the left and right

reservoir, which satisfy the relation 𝜇𝐿 − 𝜇𝑅 = ⋃︀𝑒⋃︀∆Φ, 𝑒 is the elementary charge for

electron, and 𝑔𝐿 and 𝑔𝑅 are the conductance for bulk materials. The conductance

between 𝜇1 and 𝜇2 is then expressed by,

𝐺4 = ]︀
1

𝐺
−

1

2
(

1

𝑔𝐿
+

1

𝑔𝑅
){︀

−1

(1.19)

which is also called the four-probe conductance. The interface resistance can be

expressed by,

𝑅 =
1

𝐺4

(1.20)

In the limit of perfect transmission and two sides made of same type of material, the

resistance (︀𝐺4⌋︀
−1 is zero, which is as expected. In the limit of low temperature and

considering the same materials for two leads, the conductance reduces to the famous

Landauer formula[10],

𝐺4 =
2𝑒2

ℎ𝐴

Θ(𝐸𝑓)

Θbulk(𝐸𝑓) −Θ(𝐸𝑓)
(1.21)

where Θbulk(𝐸𝑓) is the transmission function with unity transmittance for the bulk

material in the leads. For phonon transport, the four-probe conductance can be

similarly computed to Eq. 1.19 by considering the effective local temperatures instead

of the electrochemical potential energy near the interface[38].

1.3 Organization of the thesis

This thesis essentially has three parts. The first part contains the practical strategy

to reduce the interface resistance for electrons and phonons using disorders. In the

second part, the aperiodicity is studied as a strategy to induce phonon Anderson
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localization, both computationally and experimentally. In the last part, an optical

method for measuring thermal transport properties of nanostructures are presented.

In Chpater 2 and Chapter 3, we study the mode-resolved interface scattering for

electrons and phonons. In Chapter 2, we present the method to compute the specular

and nonspecular transmission through rough interfaces. In particular, we examine the

role of wavevectors and symmetries of Bloch wavefunctions in assisting or hindering

the electron transport. We also identify the specific type of disordered structures that

reduce the contact resistance the most.

In Chapter 3, we apply the mode-resolved atomistic Green’s function to study

diffuse phonon scattering. Specifically, we examine the famous model for thermal

boundary resistance, the diffuse mismatch model and the physical assumptions behind

it. In addition, we clarify the competing roles of specular and diffuse transmission

and reflection in determining the thermal boundary resistance. In Chapter 3, we

also lay the foundation of the computational schemes to study phonon transport in

nanostructures.

In Chapter 4, we study the phonon transport in aperiodic layered media com-

putationally and identify Anderson localization of phonons. We then use frequency-

domain thermoreflectance to experimentally measure the length dependence of ther-

mal conductivity of aperiodic superlattices and confirm the existence of phonon An-

derson localization up to 200 K. Our findings provides a practical way to engineer

phonon transport using aperiodicity.

In Chapter 5, we present an experimental method using transient thermal grating

to measure the thermal conductivity of thin film and the thermal boundary resistance.

Such method serves as a good alternative method of measuring the thermal transport

in nanoscale thin films to other conventional optical characterization methods.

Last but not least, in Chapter 6, we present a summary and an outlook for future

directions of studying and engineering phonon and electron transport in nanostruc-

tures.
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Chapter 2

Electron transport across rough

interfaces

2.1 Introduction

The importance of interfaces in advanced semiconductor devices has been clearly

pointed out by Herbert Kroemer with his famous statement, “the interface is the

device”[39]. Semiconductor heterostructures play essential roles in vertical-cavity

surface-emitting lasers[40, 41, 42], heterostructure bipolar transistors[43, 44], quan-

tum cascade lasers[45], quantum well infrared photodetectors[46], thermionic micro-

coolers[47, 48], bipolar transistors[49], spin qubit devices[50, 51], thermoelectric power

generators[52, 53, 54, 55], etc. However, the interfaces in heterostructures strongly

scatter electrons and cause the contact resistance[10, 56, 38, 57]. The interface scatter-

ing probabilities are not only determined by the intrinsic properties of bulk materials,

but by the non-intrinsic properties such as the interface structures. Specifically, the

interface roughness due to atomic mixing[58], as a common type of interface disorder,

alters the contact resistance. In order to design proper interface structures that min-

imize interfacial resistance, it is crucial to understand how the atomic mixing affects

electron scattering at interfaces.

The nonequilibrium Green’s function (NEGF) is often used to describe the structure-

dependent charge transport[35]. Many works using NEGF combined with Landauer
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formula for conductance are conducted to study the transport across molecular junctions[59,

60, 61, 62], nanotransistors[36, 63], grain boundaries in two-dimensional materials[64],

metal-semiconductor interfaces[65, 66], metal-metal interfaces in magnetic multilay-

ers [67, 68, 69, 70] and semiconductor interfaces[71, 72]. In particular, Bellotti et al.

investigated the carrier transport through semiconductor interfaces in the presence of

positional and compositional disorders using NEGF and found that the disorder signif-

icantly impedes the coherent propagation of carriers through multiple interfaces[71].

Tibaldi et al. performed a large-scale NEGF calculation of the carrier transport in

a realistic tunnel junctions for vertical-cavity surface-emitting lasers and achieved a

good agreement with experimental 𝐼 − 𝑉 curve. However, the interface roughness

in the transverse directions is neglected in these works, as the computational cost

of NEGF increases dramatically with the cross-section areas of the interface. Be-

sides NEGF calculation, Daryoosh et al. used a simple effective mass model to study

the carrier transport through barriers in metal-based superlattices and found that

the nonspecular (diffuse) scattering can greatly boost the thermoelectric figure of

merit 𝑧𝑇 [55]. Los studied how the transmission probability varies with the aver-

age fluctuations of potential energies due to interface disorders under the effective

mass approximation[73]. However, the effective mass approximation adopted in these

works can poorly describe practical semiconductors with band pockets not at zone

center. Due to the multi-valley nature[53] of the band structures of semiconductors,

new physics shall emerge for electron interfacial transport.

In this Chapter, we apply the mode-resolved Green’s function formalism with

tight-binding Hamiltonian to study charge transport across perfect and rough in-

terfaces due to atomic mixing. In particular, we take advantage of the transverse

translational symmetry to reduce the computational cost of surface Green’s func-

tion. The tight-binding Hamiltonian makes sure the multiple carrier pockets in the

Brillouin zone are properly described. We vary the degree of disorders in transverse

directions and perpendicular direction and study the specular and nonspecular in-

terface scattering processes with mode resolution. Moreover, we unveil the roles of

disorders and symmetries in assisting nonspecular transmission. We show that over
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one order of magnitude of reduction of the specific contact resistance can be achieved

by the interfacial atomic mixing.

2.2 Methodology

In the Green’s function calculation, we first divide the system into three regions, two

semi-infinite lead regions and a device region, as depicted in Fig. 2-1 (a). The repeated

cells along 𝑧 direction in the lead region are indexed by 0, 1, ... and the period length is

𝑎𝑧,𝛼 with 𝛼 = 𝑥, 𝑦. The whole supercell structure is periodic along directions parallel

to the interface. Inside the lead region, there are 𝑁uc,𝑥 × 𝑁uc,𝑦 identical unitcells

along the transverse directions. The transverse lattice vector for the supercell is

Rsc,𝛼 = 𝑁uc,𝛽Ruc,𝛽 with 𝛽 = 𝑥, 𝑦, where Ruc,𝛽 is the transverse lattice vector for the

unitcell. As a result, the transverse momentum in the supercell representation can be

uniquely unfolded in a momentum defined in the unitcell representation, as elucidated

in Fig. 2-1 (b). The unfolded momentum can be expressed by,

kuc,∥ = ksc,∥ + 𝑎Gsc,𝑥 + 𝑏Gsc,𝑦 (2.1)

where 𝑎 and 𝑏 are integers to be determined. Finding the correct pair of 𝑎 and 𝑏 is

known as an unfolding problem and we use the unfolding scheme by Popescu and

Zunger[74] to resolve the correct kuc,∥.

We consider the elastic interface scattering limit, where the energy 𝐸 of the in-

cident electron is conserved. In addition, the in-plane translational symmetry of the

supercell dictates that the transverse momentum ksc,∥ must be conserved during an

interface scattering event. When the device region contains a perfect interface with

the same in-plane periodicity as the lead region, the transverse momentum kuc,∥ is

conserved. However, when the device region consists of a rough interface, kuc,∥ is

not always conserved. This is because the interface roughness breaks the internal

transverse translational symmetry within the supercell and ksc,∥ can be unfolded into

different kuc,∥ for the incident state and the transmitted state. As illustrated in
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Figure 2-1: (a) The partitioning for Green’s function calculation with repeated
unitcell in the lead region being numbered with 0, 1 .... (b) The transverse mo-
mentum conservation law and how the transverse momenta in the unitcell repre-
sentation and the supercell representation are related. (c) Specular transmission
process through a perfect interface where the transverse momentum is conserved,
k𝑖,∥ = k𝑓,∥. (d) Nonspecular transmission processes through a disordered interface,
where k𝑖,∥ = k𝑓,∥+𝑚G𝑥+𝑛G𝑦, allows the scattering between valleys with different k∥.

Fig. 2-1 (c), for a perfect interface, kuc,∥ is conserved, and we denote this type of scat-

tering process the specular transmission. For a rough interface shown in Fig. 2-1 (d),

kuc,∥ can be either conserved or nonconserved. Particularly, we denote the scattering

process with nonconserved kuc,∥ the nonspecular transmission.

We define the transmission probability matrix from the left side 𝑇𝑗𝑖(𝐸,ksc,∥) as

the ratio between the normal current of the transmitted state 𝑗 to the incident state

𝑖. Formally, we can express the specular and nonspecular transmission probability

matrix with,

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑇s,𝑗𝑖(𝐸,ksc,∥) = 𝑇𝑗𝑖(𝐸,ksc,∥), when kuc,∥,𝑗 = kuc,∥,𝑖

𝑇ns,𝑗𝑖(𝐸,ksc,∥) = 𝑇𝑗𝑖(𝐸,ksc,∥), when kuc,∥,𝑗 ≠ kuc,∥,𝑖

(2.2)

The elements of the transmission probability matrix from the left side is given by,

𝑇𝑗𝑖(𝐸,ksc,∥) = ⋃︀𝑡𝑅𝐿,𝑗𝑖(𝐸,ksc,∥)⋃︀
2 (2.3)

38



where the transmission matrix 𝑡𝑅𝐿,𝑗𝑖(𝐸,ksc,∥) is related to the Green’s function[75],

𝑡𝑅𝐿(𝐸,ksc,∥) = 𝑖
⌈︂
𝑉 𝑟
𝑅(︀𝑈

𝑟
𝑅⌋︀

−1𝐺𝑁+1,0(︀𝑈
𝑎†
𝐿 ⌋︀−1

⌈︂
𝑉 𝑎
𝐿 (2.4)

The formal definitions and detailed calculations of the velocity matrices 𝑉
𝑟⇑𝑎

𝑅⇑𝐿
, eigen-

vector matrices 𝑈
𝑟⇑𝑎

𝑅⇑𝐿
and Green’s function 𝐺𝑁+1,0 can be found in the Appendix A.

Note that the calculation of the velocity matrices and eigenvector matrices require

the surface Green’s function 𝑔
𝑎⇑𝑟

𝐿⇑𝑅
(𝐸,ksc,∥). We apply the Fourier transform to the

Hamiltonian to obtain the block-diagonal surface Green’s function. Then, we apply

the inverse Fourier transform to obtain the surface Green’s function. These proce-

dures allow us to invert small matrix multiple times rather than directly inverting

the large matrix, which greatly boosts the computational efficiency. The detailed

implementation can be found in Ref. [76].

2.3 Results and discussions

2.3.1 Band structures

We study the [001] Si/Ge interface as it is a classical semiconductor interface used

in a wide range of applications such as quantum information storage[51], strained

field-effect transistors[?, ?] and thermoelectrics[77, 53]. To start with, we exam-

ine the bands structures for Si and Ge individually. We use 𝑠𝑝3𝑑5𝑠∗ Slater-Koster

tight-binding model[78, 79] to construct the Hamiltonian, with hopping integral pa-

rameterizations from Niquet et al [80]. More specifically, the hopping integral varies

with the bond length according to a power law,

𝑉𝛼𝛽𝛾(𝐿) = 𝑉0,𝛼𝛽𝛾 (
𝐿

𝐿0

)

𝜒𝛼𝛽𝛾

(2.5)

where 𝛼 and 𝛽 refer to the orbital types, 𝛾 is the type of bond, 𝐿 is the bond length,

𝐿0 is the unstrained bond length, 𝑉0,𝛼𝛽𝛾 is the hopping integral for unstrained bond,

and 𝜒𝛼𝛽𝛾 is the power law exponent. The band structures using this set of hopping
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integrals have shown an excellent agreement with GW calculations with various strain

ratios[80]. The bulk Si and Ge have mismatched lattice constants with 𝑎Si = 5.431

Å and 𝑎Ge = 5.658 Å. Correspondingly, the unstrained bond lengths for Si and Ge

are 2.352 Å and 2.450 Å , respectively. For simplicity, we study the lattice-matched

interface and we assume the Si-Si and Ge-Ge bond lengths are the same, 𝐿 = 2.398 Å ,

which is relaxed Si-Ge bond length found by Niquet et al [80]. Furthermore, we rescale

the 𝐿0 for Si-Si bond and Ge-Ge bond to be 𝐿0 = 2.398 Å to ensure that the Si’s and

Ge’s band structures are the same with their unstrained bulk band structures[81, 82].

In our calculation, the spin-orbital coupling is not included.

First, we compare the band structures 𝐸𝑛(k) of bulk Si and Ge along high-

symmetry paths and examine the distributions of electron/hole pockets in the first

Brillouin zone, as depicted in Fig. 2-2 (a), which clearly shows that the conduction

band pockets for Si and Ge are distributed very differently, whereas their valence band

pockets are quite similar. In particular, the highest valence bands for Si and Ge are

both at Γ point. In contrast, the conduction band edge for Si is close to X point along

the ΓX path (in the following, we denote this point ∆), while the conduction band

edge for Ge is at L point. In addition, there are 6 pockets for Si’s lowest conduction

band at ∆ point, while there are 4 pockets (or 8 half-pockets) for Ge at L point. The

second-lowest conduction band for Si is at X point. The second- and third-lowest

conduction bands for Ge are at Γ point and ∆ point, respectively.

Next, we look into the symmetry properties of the Bloch wavefunctions in order

to develop an understanding of how symmetry affects the transmission. In the bra-

ket notation, the transmission matrix element is directly proportional to the Green’s

function matrix element,

𝑡𝑗𝑖 ∝ ∐︀𝑢𝑗 ⋃︀ 𝐺̂ ⋃︀𝑢𝑖̃︀ (2.6)

where 𝐺̂ = (𝐸𝐼 − 𝐻̂)
−1

is the Green’s function operator and 𝐻̂ is the Hamiltonian

operator[30, 83]. It is easy to show that 𝐺̂ inherits all symmetries of 𝐻̂[84]. For

⋃︀𝑢𝑗̃︀ and ⋃︀𝑢𝑖̃︀ with certain type of symmetries, the transmission matrix element 𝑡𝑗𝑖 is

guaranteed to vanish according to group theory[85]. Thus, it is essential to identify
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Figure 2-2: (a) The band structure for bulk Si, Ge along high symmetry lines in the
first Brillouin zone. Left inset: the three-dimensional first Brillouin zone of Si (Ge)
and its projection on the (001) plane. Right inset: the atomic structure for Si (Ge)
unitcell along [001] direction. (b) The band structures for Ge and tensile-strained Ge
(2 %). (c) The band structures for Si and Ge slabs along high symmetry lines in the
surface Brillouin zone. The slab contains 108 atom layers (27𝑎 in thickness with 𝑎
the lattice constant).

the symmetries of Bloch wavefunctions of the two sides.

To describe the symmetry properties of Bloch wavefunctions in Si and Ge, the

Bouckaert-Smoluchowski-Wigner (BSW)[86] notation is adopted in Fig. 2-2 (a), which

marks the irreducible representations for the Bloch wavefunction. The different ir-

reducible representations of the same group (labeled by the same Greek letter with

different subscripts) are orthogonal to each other. The character tables for different

groups can be found in group theory textbooks[85] and online databases[87]. They

describe how the Bloch wavefunction transforms under different symmetry operations.

For instance, the states of the lowest conduction band of Si at ∆ point transform as

∆1 representation under the symmetry operations of 𝐶4𝑣 group. On the other hand,

the states of the second-lowest conduction band in Ge at ∆ point transform as ∆2′

representation. Without the loss of generality, we consider the ∆ points along the z

axis [(0,0,1) axis]. In this case, one of the 𝐶4𝑣 group elements is the symmetry oper-

ation 𝑆 = {𝐶4⋃︀𝜏𝑑} with 𝜏𝑑 =
1
4(𝑎, 𝑎, 𝑎), which first rotates the Bloch wavefunction by

90 degree with respect to the z axis and then applies the translation operator by 𝜏𝑑.
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When applying 𝑆 to a state ⋃︀𝑢𝑖̃︀ of ∆1 symmetry, we have 𝑆 ⋃︀𝑢𝑖̃︀ = 1 ⋅𝑒𝑖𝑘𝑧𝑎⇑4 ⋃︀𝑢𝑖̃︀, where

𝑘𝑧 is the wavevector’s z component. The phase factor 𝑒𝑖𝑘𝑧𝑎⇑4 appears because the

space group of Si (Ge) structure is nonsymmorphic. In comparison, when applying

the same operator 𝑆 to a state 𝑢𝑖 of ∆2′ symmetry, we have 𝑆 ⋃︀𝑢𝑖̃︀ = −1 ⋅ 𝑒𝑖𝑘𝑧𝑎⇑4 ⋃︀𝑢𝑖̃︀.

Intuitively, one can regard ∆1 as “even” and ∆2′ as “odd” in a more generalized way.

If the incident and transmitted states are not compatible, they will never interact.

Hence, knowing the symmetry properties of wavefunctions (i.e., their irreducible rep-

resentations) will be useful in the later analysis of the transmission probabilities.

Moreover, the strain effect can change the relative positions for different valleys

in the reciprocal space. We find that the strain generally has a smaller impact on Si

compared with Ge thus we only consider the case of applying strain to Ge. Since we

have already assumed the Si and Ge have the same bond lengths 𝐿 = 2.398 Å, we

change the equilibrium 𝐿0 of Ge from 2.398 Å to 2.343 Å while keeping 𝐿 unchanged.

The corresponding hopping integrals 𝑉𝛼𝛽𝛾 defined in Eq. 2.5 are altered and the Ge

band structure is accordingly changed. Equivalently, we have applied a tensile strain

of 2 % to Ge. In Fig. 2-2 (b), we compare the band structures of strained Ge (sGe for

short) with the relaxed Ge. The elongated bond pushes the second-lowest conduction

band downwards and make it the lowest conduction band. It also shifts the third-

lowest band further upwards. Meanwhile, the strained Ge-Ge bond also makes the

valence band upwards and thus causing a smaller bandgap. The features of the sGe

band structure are consistent with other works[51, 88].

When forming an interface, the translational symmetry is broken along the di-

rection normal to the interface, and the band structures are now projected to the

two-dimensional surface Brillouin zone, as depicted in the left inset of Fig. 2-2 (c).

We conduct a slab calculation to study the projected band structure. The slab is

periodic along x and y directions and finite in z direction. The unitcell for Si (Ge)

slab along [001] direction contains 4 atoms, as shown in the right inset of Fig. 2-2 (a).

Note that the atomic structure of Si (Ge) has mirror symmetries with respect to (110)

and (11̄0) planes. In Fig. 2-2 (c), we find that the highest valence bands of Si and Ge

are both projected to the Γ̄ point. Two out of the six lowest conduction band pockets
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of Si are projected to the Γ̄ point, two pockets are projected to a point between Γ̄

and X̄ point and the remaining two pockets are projected to a point between Γ̄ and

Ȳ point. As for Ge, two of the four lowest conduction band pockets at L points are

projected to the X̄ point and the remaining two are projected to the Ȳ point. Since we

use a slab to compute the projected band structure, we observe the surface states[89]

for Si and Ge in the bandgap. They each have two degenerate surface states within

the x-y plane, one for the top surface, one for the bottom surface. However, in the

direction normal to the interface (z direction), these surface states are localized thus

do not contribute to the interfacial transport.

Lastly, we study the density of states for the projected band. The density of states

for the projected band structures at the given energy 𝐸 and transverse momentum

kuc,∥ is obtained by taking the imaginary part of retarded surface Green’s function

given by Eq. A.4 for the lead,

SDOS(𝐸,kuc,∥) = −
1

𝜋
Im𝑔𝑟𝛼(𝐸,kuc,∥) (2.7)

where 𝑔𝑟𝛼(𝐸,kuc,∥) is the retarded surface Green’s function for 𝛼 lead with 𝛼 =

Si,Ge. From the density of states shown Fig. 2-3 (a), where we use color to indicate

ln (︀SDOS(𝐸,kuc,∥)⌋︀, we identify the localized states in the bandgap, the continuum

spectrum of propagating conduction band electrons and the resonant states inside the

continuum spectrum.

2.3.2 Transmission through a perfect interface

We first study the electron transmission through a perfect interface. There are several

relevant physical quantities, and we want to clarify their definitions here to avoid

confusion. 𝑡𝑅𝐿,𝑗𝑖(𝐸,ksc,∥) is the transmission matrix, which is used to compute the

transmission probability matrix. 𝑇𝑗𝑖(𝐸,ksc,∥) is the transmission probability matrix,

which described mode-to-mode transition probability, normalized by normal incident

current. 𝑇𝑖(𝐸,ksc,∥) refers the transmission probability (transmittance) across the

interface for an incident electron 𝑖. The transmission spectrum 𝑇 (𝐸,ksc,∥) is the
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Figure 2-3: The surface density of states SDOS(𝐸,kuc,∥) for (a) Si, (b) Ge and (c)
sGe. The logarithm of the surface density of state is indicated by colors and the spin
degree of freedom 2 is not multiplied. The transmission spectra 𝑇 (𝐸,kuc,∥) along high
symmetry lines in the surface Brillouin zone through (d) a perfect Si/Ge [001] interface
and (e) a perfect Si/sGe [001] interface. (f) Left panel: the transmission function
Θ(𝐸) = 1

𝑁kuc,∥
∑kuc,∥

𝑇 (𝐸,kuc,∥) for a perfect Si/Ge interface and a perfect Si/sGe

interface (𝑁kuc,∥
= 40 × 40 is used). Right panel: the transmittance 𝜏𝛼(𝐸) =

Θ(𝐸)
Θbulk,𝛼(𝐸)

from Si and Ge side, where Θbulk,𝛼(𝐸) is the transmission function for bulk 𝛼 material.

number of transmission channels including all subbands that have same 𝐸 and ksc,∥.

The transmission function (we use transmission in short in figures) Θ(𝐸) describe

the total number of transmission channels at the given energy 𝐸 and is the sum of

all transmission channels with different ksc,∥. Note that 𝑡𝑅𝐿,𝑗𝑖(𝐸,ksc,∥), 𝑇𝑗𝑖(𝐸,ksc,∥),

𝑇𝑖(𝐸,ksc,∥) depend on which side incident electron is from, whereas 𝑇 (𝐸,ksc,∥), Θ(𝐸)

are independent of the side of incidence.

The transmission probability can be computed by summing the transmission prob-

ability matrix over all possible final states. And the specular part and nonspecular
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part of the transmission probability read,

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑇s,𝑖(𝐸,ksc,∥) = ∑𝑗 𝑇s,𝑗𝑖(𝐸,ksc,∥)

𝑇ns,𝑖(𝐸,ksc,∥) = ∑𝑗 𝑇ns,𝑗𝑖(𝐸,ksc,∥)

(2.8)

The transmission function is the measure of conductance channels and it can be ex-

pressed by, Θ(𝐸) = Θs(𝐸)+Θns(𝐸), where the specular and nonspecular transmission

function are defined by,

Θs(𝐸) =
1

𝑁ksc,∥

∑
𝑖,ksc,∥

𝑇s,𝑖(𝐸,ksc,∥)

Θns(𝐸) =
1

𝑁ksc,∥

∑
𝑖,ksc,∥

𝑇ns,𝑖(𝐸,ksc,∥)

(2.9)

For the case of perfect interface, all the transmission processes are specular, hence we

have 𝑇s,𝑗𝑖(𝐸,ksc,∥) = 𝑇𝑗𝑖(𝐸,ksc,∥). In addition, for the perfect interface, we only need

to construct a unitcell as the supercell such that the in-plane momenta in the unitcell

representation and the supercell representation are the same, kuc,∥ = ksc,∥.

The transmission spectrum is attained by 𝑇 (𝐸,kuc,∥) = ∑𝑖 𝑇𝑖(𝐸,kuc,∥), where we

sum over all subbands with the same 𝐸 and kuc,∥. In Fig. 2-3 (d) and (e), we show the

transmission spectra 𝑇 (𝐸,kuc,∥) through the Si/Ge and Si/sGe interfaces. Comparing

with the surface density of states through examining the Fig. 2-3 (a)-(d), we see that

the transmission is non-zero only when the surface density of states for Si and sGe

overlap. This is due to the energy and momentum conservation requirement. For

example, the Ge’s lowest conduction band at X̄ and Ȳ does not have any corresponding

states in Si thus cannot contribute to transmission. Most of the overlapped states are

the valleys at Γ̄ and along the Γ̄M̄ path, which corresponds to the lowest conduction

band in Si, and second- and third-lowest conduction bands in Ge.

Because of the mismatch of conduction band valleys of Si and Ge, a large “trans-

port gap” of 1.65 eV emerges at the Γ̄ point. For a Si/sGe interface, the transmission

spectra for holes change slightly from a Si/Ge interface. The transport gap is 1.91 eV,

which even larger due to fewer energy and momentum matched conduction bands.
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Figure 2-4: The ensemble-averaged total transmission function Θ(𝐸) and nonspecular
transmission function Θns(𝐸) through rough Si/Ge interfaces for (a) electrons and (b)
holes in solid lines compared with the transmission function for a perfect interface in
dashed line. 21 configurations of 2×2, 8 ml disordered interfaces are used for ensemble
average. (c) and (d): the transmission function for Si/sGe interfaces. (e) and (f): the
ensemble-averaged mode-resolved specular and nonspecular scattering probabilities
at 𝐸 = 1.77 eV for rough Si/sGe interfaces defined by Eq. 2.8 as a function of in-
plane momentum kuc,∥. The calculation uses a 40 × 40 ksc,∥-point mesh. Equivalently,
it corresponds to a 80 × 80 kuc,∥ mesh.

From the energy-resolved transmission and transmittance in Fig. 2-3 (f), we also find

that strain has much smaller impact on the hole transmission than the electron trans-

mission. This is because the valence bands stay at Γ̄ point even with strain, while the

strain changes the position of conduction bands in reciprocal space more profoundly.

What is intriguing is that at Γ̄ point, Si and sGe have overlapped conduction

band pockets, yet the transmission 𝑇 (𝐸,kuc,∥) is still almost zero. This implies that

there are other factors other than energy and momentum conservation which lim-

its the transmission. We found out that the zero transmission originates from the

different symmetries of the wavefunctions. In three-dimensional Brillouin zone, the

lowest conduction band of sGe is at Γ point with Γ2′ symmetry. Under the symme-

try operation 𝑆 = {𝐶4⋃︀𝜏𝑑} mentioned above, it transforms as 𝑆 ⋃︀𝑢𝑅,Γ̃︀ = − ⋃︀𝑢𝑅,Γ̃︀. In

comparison, for the lowest conduction band of Si at ∆ point, it satisfies 𝑆 ⋃︀𝑢𝐿,Δ̃︀ =

𝑒𝑖𝑘𝐿,𝑧𝑎⇑4 ⋃︀𝑢𝐿,Δ̃︀. The Hamiltonian for a perfect Si/sGe interface should always have

“even” symmetry representation ∆1. Hence, it follows that 𝑆𝐻̂ = 𝑒𝑖𝑘𝐿,𝑧𝑎⇑4𝐻̂ and
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𝑆𝐺̂ = 𝑒−𝑖𝑘𝐿,𝑧𝑎⇑4𝐺̂. As a result, the transmission matrix element should satisfy the con-

dition, 𝑡𝑗𝑖 ∝ ∐︀𝑢𝑅,Γ⋃︀ 𝐺̂ ⋃︀𝑢𝐿,Δ̃︀ = ∐︁𝑆𝑢𝑅,Γ⋂︀𝑆𝐺̂ ⋂︀𝑆𝑢𝐿,Δ̃︁ = − ∐︀𝑢𝑅,Γ⋃︀ 𝐺̂ ⋃︀𝑢𝐿,Δ̃︀. Consequently, we

obtain that 𝑇𝑗𝑖 = ⋃︀𝑡𝑗𝑖⋃︀2 = 0. Similarly, for the electrons at ∆ point with k = (0,0, 𝑘𝑅,𝑧),

they have ∆2′ symmetry and transform as 𝑆 ⋃︀𝑢𝑅,Δ̃︀ = −𝑒𝑖𝑘𝑅,𝑧𝑎⇑4 ⋃︀𝑢𝑅,Δ̃︀. Resultantly,

we have 𝑡𝑗𝑖 ∝ ∐︀𝑢𝑅,Δ⋃︀ 𝐺̂ ⋃︀𝑢𝐿,Δ̃︀ = ∐︁𝑆𝑢𝑅,Δ⋂︀𝑆𝐺̂ ⋂︀𝑆𝑢𝐿,Δ̃︁ = − ∐︀𝑢𝑅,Δ⋃︀ 𝐺̂ ⋃︀𝑢𝐿,Δ̃︀ and correspond-

ingly 𝑇𝑗𝑖 = 0. In short, the transmission at Γ̄ is exactly zero, dictated by symmetry.

2.3.3 Transmission through rough interfaces

We add interface disorders in the form of atomic mixing. In particular, we randomly

swap pairs of Si and Ge atoms that have the same distance to the interface. We use

a larger supercell with in-plane periodicity to describe the rough interface. To mimic

an actual rough Si/Ge interface observed in experiments[58], we make sure that the

further away from the interface, the fewer or equal number of atom pairs are swapped.

In the following, we define two measures of the degree of interface disorders along the

interface normal and along the transverse directions.

The first measure is the number of atom layers that are involved in atomic mixing.

If there are 2 layers of Si and 2 layers of Ge atoms that are involved in atomic

intermixing, the number of atoms that are swapped per layer follows a pattern of

1|2|2|1. We label such interface structure by 4 ml, in short for four mixing layers.

A larger ml number corresponds to the larger degree of disorders in the cross-plane

direction. The atomic number density of Si across the rough interface with different

mixing layers can be found in Fig. A-1 in the Appendix A.

The second measure is the size of the transverse supercell. For example, when we

construct a 2×2 transverse supercell with 4 ml structure, there are 2 out of 4 atoms

for the Si atom layer closest to the interface and 1 out of 4 atoms for the Si atom layer

secondly closest to the interface involved in atomic mixing. When we use a larger

transverse supercell (3×3 or 4×4), we let the number of swapped atoms unchanged.

The larger transverse supercell we use, the smaller degree of disorders along the

transverse directions. For a given ml number and a given supercell size, we generate

21 random configurations and compute the ensemble average of the transmission and
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reflection probability matrix elements.

We found that the total transmissions for electrons and holes are both enhanced

for rough Si/Ge and Si/sGe interfaces compared with the corresponding perfect in-

terfaces, as shown in Fig. 2-4 (a)-(d). Particularly, the total transmission function

for a perfect Si/sGe interface with energy 𝐸 ranging from 1.5 eV to 1.9 eV is zero,

whereas transmission function for the corresponding rough interface is largely en-

hanced by nonspecular scattering processes. For the hole transmission, we notice

that the nonspecular part is much smaller than the specular part and the enhance-

ment in the total transmission is not significant, although the transmission for both

electrons and holes are enhanced by the rough interface compared with the perfect

interface. This is because holes are close to k = 0 and have long wavelengths. In

Fig. A-2 of Appendix A, we have shown the dependence of transmission function

on the degree of disorders along transverse and longitudinal directions. It turns out

that the smaller transverse supercell dimensions and large mixing layer numbers are

in favor of the nonspecular transmission. The smaller transverse supercell provides

a large G∥, which allows the transition between valleys with large momentum mis-

match. The larger degree of disorders along the perpendicular direction can lower the

lateral symmetry to a greater extent and provides more channels that are previously

forbidden by symmetry. Moreover, the effective thickness 𝛿 of the interface roughness

along the perpendicular direction increases with increasing ml number. The inter-

face roughness preferably couples with carriers with ⋃︀𝑘𝑧 ⋃︀ ∼
2𝜋
𝛿 . The enhancement of

transmission will be promoted if the corresponding valley satisfies ⋃︀𝑘𝑧 ⋃︀ ∼ 2𝜋
𝛿 .

In Fig. 2-4 (e), we plot the mode-resolved specular transmission and reflection

probabilities at 𝐸 = 1.77 eV as a function of their unfolded momentum kuc,∥. We find

that the overlapped valleys for Si and sGe at Γ̄ point lead to small specular trans-

mission probability. This is because the atomic mixing at the interface breaks the

symmetry of Hamiltonian 𝐻̂ and the above-mentioned symmetry-forbidden transmis-

sion at Γ̄ point is now allowed. In Fig. 2-4 (f), we show the nonspecular transmission

and reflection probabilities. The majority of nonspecular transmission processes are

found to be starting from the Γ̄ and M̄ point in Si to the X̄ and Ȳ point in sGe.

48



These processes correspond to the transition between the lowest conduction band of

Si at ∆ point and the lowest conduction band of Ge at L in the three-dimensional

Brillouin zone. Si’s conduction band at ∆ point and Ge’s conduction band at 𝐿 point

are both far from Γ point and the conduction electrons have small wavelengths. The

characteristic length of disorders has to be small to contribute to the nonspecular

interface scattering. Thus, smaller transverse supercell dimensions, i.e., atomic-scale

disordered structures, are in favor of more nonspecular transmission channels.

We can define the specular and nonspecular reflection probabilities similarly to

the transmission. By examining the specular and nonspecular reflection probabili-

ties, we find that the newly emerged nonspecular reflection channels are accompanies

by the removal of the specular transmission channels at the same kuc,∥. Although

the increasing nonspecular reflection probability is detrimental for interfacial trans-

port, there are overall more nonspecular transmission channels than the nonspecular

reflection channels thus total transmission is still enhanced.

With the knowledge of the transmission function, we proceed to compute the

contact resistance. The Landauer-Büttiker formalism is used to compute the two-

probe conductance,

𝐺12 = −
2𝑒2

ℎ ∫
𝑑𝐸Θ(𝐸)

𝜕𝑓

𝜕𝐸
(2.10)

where ℎ is the Plank constant, 𝑓 = 1
𝑒(𝐸−𝜇)⇑𝑘𝐵𝑇

+1
is the Fermi-Dirac distribution function

and the factor 2 describes the spin degree of freedom. The subscripts 1 and 2 refer

to the left and right sides. The four-probe conductance can be computed by[29, 30],

𝐺4 =
1

𝐺−1
12 −

1
2 (𝐺

−1
11 +𝐺−1

22)
(2.11)

where 𝐺11 and 𝐺22 are the two-probe conductance for bulk material 1 and 2, respec-

tively. In practical calculations of the conductance for a bulk material, we let the two

leads and devices all consist of same materials. Then, the specific contact resistance

is defined by,

𝜌𝑐 =
𝐴

𝐺4

(2.12)
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where 𝐴 is the cross-section area.

In Fig. 2-5, we observe over an order of magnitude reduction in the contact resis-

tance for conduction electrons through the rough Si/sGe interface at various temper-

atures compared with the corresponding perfect interface. For the rough Si/Ge inter-

face, a much smaller reduction in contact resistance for conduction electrons is found.

This is because the perfect Si/Ge interface does not have the symmetry-forbidden

transmission for low-energy conduction electrons as the perfect Si/sGe interface does.

As a result, for Si/Ge interface, the lowered symmetry due to interface roughness

does not benefit as much as the Si/sGe interface. For valence bands, the hole contact

resistances for Si/Ge and Si/sGe interfaces are only slightly reduced by the interface

disorders, as most holes from two sides have compatible momenta and symmetries.

Last but not least, we want to examine how the symmetry of the disordered

interface changes the nonspecular transmission. The nonspecular transmission prob-

ability can be analyzed using perturbation theory[90, 76] and we argue that the non-

specular transmission probability is proportional to the scattering matrix element,

𝑡𝑛𝑠,𝑗𝑖 ∝ ∐︀𝑢𝑗 ⋃︀∆𝐻 ⋃︀𝑢𝑖̃︀, where the perturbed potential is the difference between the po-

tential energy for disordered interface and perfect interface, ∆𝐻 = 𝐻rough −𝐻perfect.

For different disordered interface structures, the symmetry of ∆𝐻 can be different.

In Fig. 2-6, we have shown the nonspecular transmission for three representative

disordered interface configurations. In Fig. 2-6 (d), we have plotted the projected

band structures of Si and sGe, sorted according to the symmetries of Bloch wave-

functions under mirror operation. The conduction band for Si and sGe are both

even under the 𝜎𝑥 operation, thus it is preferred to have ∆𝐻 with even symmetry

as well such that 𝑡ns,𝑗𝑖 ∝ ∐︀𝑢𝑗 ⋃︀∆𝐻 ⋃︀𝑢𝑖̃︀ = ∐︀𝜎𝑥𝑢𝑗 ⋃︀𝜎𝑥∆𝐻 ⋃︀𝜎𝑥𝑢𝑖̃︀ = ∐︀𝑢𝑗 ⋃︀∆𝐻 ⋃︀𝑢𝑖̃︀ and 𝑡ns,𝑗𝑖 is

not forbidden by symmetry. As for the case with no mirror symmetries along 𝑥 or 𝑦

directions, the symmetry of the whole system is lowered and the symmetry analysis

for 𝑡ns,𝑗𝑖 does not work. Although there are some nonspecular transmission channels

for the case with no mirror symmetry, the nonspecular transmission still favors the

disordered structures with compatible symmetries with the initial and final states

than those without.
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Figure 2-5: The specific contact resistance for (a) electrons and (b) holes for rough
Si/Ge interfaces in solid lines and for the perfect Si/Ge interface in dashed lines at
various temperatures. The specific contact resistance for (c) electrons and (d) holes
for rough Si/sGe interfaces in solid lines and the perfect Si/sGe interface in dashed
lines at various temperatures.
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Figure 2-6: (a) The disordered structure with both 𝜎𝑥 and 𝜎𝑦 symmetry. (b) The
disordered structure without 𝜎𝑥 yet with 𝜎𝑦 symmetry. (c) The disordered structure
without 𝜎𝑥 and 𝜎𝑦 symmetry. 𝜎𝑥 and 𝜎𝑦 refer to the mirror symmetries along the x
and y directions. In (a)-(c), the open circles are the Si atoms and the filled circles
refer to the swapped Ge atoms. The larger circles represent the atoms closer to the
interface. We only plot the Si side here, and on the Ge side the swapped Si atoms
have the same transverse positions with the swapped Ge atoms on the Si side. (a)-
(c) all correspond to 4 × 4, 2 ml structures. (d) The projected bulk band structures
of Si and sGe along Γ̄X̄ in the surface Brillouin zone sorted by their symmetries.
(e) The nonspecular transmission function Θns(𝐸) for the three disordered interface
structures plotted in (a)-(c).
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2.4 Conclusion

We have studied the charge transport through a [001] Si/Ge interface. The transmis-

sion though a perfect interface must be specular. The electron transmission through

the Si/Ge interface is very low due to momentum-mismatched band structures. The

incompatible symmetries of the electron states at different pockets also forbid the

transmission, leading to a high contact resistance. However, with atomic mixing at

the interface, the symmetry is lowered and the previously forbidden transmission is

allowed. In addition, the nonspecular transmission connecting electron pockets with

different transverse momentum is enabled by those interface disorders. As a result,

the specific contact resistance is reduced by over an order of magnitude.
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Chapter 3

Phonon transport through rough

interfaces

3.1 Introduction

The interface between two dissimilar materials, or even same materials but different

crystal orientations, can scatter phonons and gives rise to the thermal boundary resis-

tance for heat flow across the interface[8, 91, 92]. One model for the thermal boundary

resistance is based on assuming that phonons are specularly scattered at the inter-

face and computing the phonon transmittance and reflectance based on acoustic wave

equations, i.e., the acoustic mismatch model (AMM)[93, 91]. However, it was found

that the AMM only works at very low temperatures at which the phonon wavelengths

are long. At elevated temperatures, phonons of short wavelengths carry most of the

heat, and they do not experience specular transmission/reflection due to interface im-

perfections, such as atomic mixing. The diffuse mismatch model (DMM) is proposed

as an extreme to describe phonon transport across such rough interfaces[8]. Two ma-

jor assumptions are made in the DMM. Firstly, the transmittance is isotropic, i.e.,

transmittance is angle-independent. Secondly, phonons lose memory of their origin

after being scattered by the interface such that one cannot distinguish if a phonon

has just been through a transmission or reflection process. Although the DMM has

improved the agreement with experimental measurements of thermal boundary resis-
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tance at high temperatures[94, 95], the assumptions behind DMM have never been

examined in detail.

The thermal boundary resistance has been studied using equilibrium molecular

dynamics[96, 97, 98] and nonequilibrium molecular dynamics[99, 100, 101]. In particu-

lar, phonon-mode-resolved transmittance had been formulated, which builds upon the

atomic trajectories at steady state from molecular dynamics (MD) simulations[102],

where the anharmonicity of phonons is intrinsically included. It has been applied

to study mode-resolved transmittance through perfect interfaces, yet it has not been

used to examine details of diffuse phonon transmittance across a disordered interface.

Phonon wave-packet dynamics technique has been applied to compute the trans-

mittance and reflectance of each phonon mode, and the Kapiza resistance can be

calculated using Landauer formalism[103, 104]. The MD simulations and, especially

the wave-packet dynamics simulations, however, require large structures in real space,

including two bulk regions and the interface region, and simulating phonon transport

through a rough interface with a large lateral dimension becomes computationally

extensive.

The atomistic Green’s function (AGF) has been shown as an effective method to

study phonon interfacial transport[105, 37, 106]. The method is formulated in recip-

rocal space such that one does not have to deal with large-scale simulations of atomic

displacements in real space. Recent advances in calculation of interfacial thermal

resistance using the AGF have provided more insights in understanding interfacial

thermal resistance with detailed information including mode-resolved transmission

coefficients[107, 108, 109, 105]. Specifically, Ong et al studied the phonon specular-

ity and coherence for phonon transport through a disordered grain boundary in two-

dimensional graphene, and showed that incoherent phonon scatterings at interface are

almost perfectly diffusive[110]. Ong also demonstrated that the specularity parame-

ters are different for transmittance and reflectance for graphene grain-boundaries[111].

Using AGF combined with ab initio inter-atomic force constants, Tian et al found

that the intermixing of atoms for Si/Ge interface can enhance interfacial thermal

conductance[106]. Sadasivam et al demonstrated using phonon-eigenspectrum-based
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formulation of AGF that the enhanced interfacial thermal conductance of a Si/Ge

interface with atom intermixing comes from diffuse transmission channels where the

in-plane momentum is not conserved[108]. The scattering boundary method (SBM),

a mathematically equivalent method to AGF has been proposed by Young et al [112]

and generalized by Zhao et al [113] to study mode-resolved phonon scattering at the

interface. Simon et al [114] has applied SBM to study phonon scattering at the inter-

face between two-dimensional materials. Recently, Latour et al have demonstrated

the transmission spectra across a perfect interface as a function of incident angle of

phonons, using mode-resolved AGF[109]. However, in order to study diffuse phonon

scattering, a supercell of a rough interface with a large lateral dimension is required.

In addition, the folded lateral wavevector in the supercell must be carefully mapped

back to the wavevector defined in the original unitcell. We realize that, despite these

studies, none of them had critically examined the validity of DMM for diffuse phonon

scattering.

In this Chapter, we conduct mode-resolved AGF calculation of transmittance

and reflectance, and revisit the assumptions of DMM. Our study reveals that most

phonons do not lose their memory of origin. We also derive an analytical expression

for the diffuse transmittance and reflectance based on a continuum model, and show

that it works reasonably well at low frequencies.

3.2 Methodology

3.2.1 Revisiting DMM

To derive the DMM, Swartz and Pohl[8] have made two major assumptions. The first

assumption is that phonons are diffusely scattered by the interface and the transmit-

tance is isotropic,

𝑇𝐿→𝑅(𝜔,q𝜈) = 𝑇𝐿→𝑅(𝜔) (3.1)

where q is the wavevector of the phonon with frequency 𝜔 and 𝜈 is the phonon branch

index on the left side. The second assumption is that the transmittance from one
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side must equal the reflectance from the other side, i.e., complete loss of memory,

𝑅𝑅→𝑅(𝜔,q𝜈) = 𝑇𝐿→𝑅(𝜔) (3.2)

Consequently, the transmittance from right side writes,

𝑇𝑅→𝐿(𝜔,q𝜈) = 1 − 𝑇𝐿→𝑅(𝜔) (3.3)

At a given frequency, by invoking the principle of detailed balance, the transmit-

tance in the elastic scattering limit writes,

𝑇𝐿→𝑅(𝜔)

=
∑
+

q𝜈
𝑣𝑅𝑧,q𝜈

𝑉uc,𝑅
𝛿(𝜔 − 𝜔𝑅,q𝜈)

∑
+

q𝜈
𝑣𝐿𝑧,q𝜈

𝑉uc,𝐿
𝛿(𝜔 − 𝜔𝐿,q𝜈) +∑

+

q𝜈
𝑣𝑅𝑧,q𝜈

𝑉uc,𝑅
𝛿(𝜔 − 𝜔𝑅,q𝜈)

=
Θbulk,𝑅(𝜔)

Θbulk,𝐿(𝜔) +Θbulk,𝑅(𝜔)

(3.4)

where 𝑣𝛼𝑧,q𝜈 with 𝛼 = 𝐿,𝑅 is the group velocity normal to the interface for phonons

from the left or the right side, 𝜔𝛼,q𝜈 is the phonon frequency and 𝑉𝑢𝑐,𝛼 is the volume

of unitcell of the left and the right side. The superscript + means that only forward-

moving states with 𝑣𝛼𝑧,q𝜈 > 0 are included in the summation. The transmittance can

also be written in terms of the ratio of transmission functions, as expressed in the

second line of the equation. Θbulk,𝐿⇑𝑅(𝜔) is the bulk transmission function for the

left/right side, which is a measure of the number of heat conduction channels.

To assess the validity of DMM, we examine if the transmittance and reflectance

are indeed isotropic and if the transmittance from one side and reflectance from the

other side are the same.

3.2.2 Mode-resolved atomistic Green’s function formalism

The essential physical quantities to study diffuse phonon scattering by a rough inter-

face are the transmission probability matrix 𝑇𝑚𝑛(𝜔) and reflection probability matrix

𝑅𝑙𝑛(𝜔) at a given phonon frequency 𝜔, which describe the transition probability from
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the initial state 𝑛 to the final state 𝑙 or 𝑚 via interface scattering processes. These

matrices are computed from mode-resolved atomistic Green’s function formalism as

outlined in Ref. [75, 107, 110], with details provided in the supplementary material

in Ref. [76]. Specifically, we divide the system of interest into three parts, the left

lead, the right lead and the device. We have applied decimation technique in com-

puting the surface Green’s function for the leads[115]. The recursive Green’s function

method is used to compute the Green’s function for the device region[116, 117]. A

propagating state coming out of one lead can be transmitted through (or be reflected

by) the device region and travel to the other lead (or the same lead). We then com-

pute the ratio of the heat flux along the z direction of the outgoing state 𝑚 (or state

𝑙), to the heat flux along the z direction of the initial state 𝑛, which is the element of

transmission probability matrix 𝑇𝑚𝑛(𝜔) (or reflection probability matrix 𝑅𝑙𝑛(𝜔)).

For a rough interface created by atomic mixing at the interface, the transverse

translational symmetry is broken by the interfacial disorders. It is impractical to

compute scatterings of an infinitely large rough interface. Instead, we construct a

supercell of two materials and a rough interface between them with periodic boundary

conditions along the transverse directions (x-direction and y-direction). Because of

the transverse periodicity of the supercell, the phonon state of the lead region defined

at a given transverse wavevector qsc,∥ can only be scattered into phonon states of the

lead region (either the left or the right lead) with the same wavevector qsc,∥.

The lead part of the supercell contains 𝑁𝑥 × 𝑁𝑦 repeated unitcells, as depicted

in Fig. 3-1 (a). The period lengths of the lead along the direction normal to the

interface are 𝑎𝑧,𝐿 for the left lead and 𝑎𝑧,𝑅 for the right lead. The phonon wavevec-

tors parallel to the interface in the supercell and in the unitcell representations are

related via quc,∥ = qsc,∥ + 𝑎Gsc,𝑥 + 𝑏Gsc,𝑦, where 𝑎 and 𝑏 are integers. Gsc,𝑥 and Gsc,𝑦

are transverse reciprocal lattice vectors of the supercell. The phonon states at the

corresponding equivalent wavevectors (with same 𝑞𝑧 and same branch index) in the

two representations are equivalent[118]. The phonon state in the unitcell represen-

tation is preferred as it is much easier to interpret than the supercell representation

(we will hide subscript uc in the following for visual clarity). However, for a given
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supercell state qsc,∥, there are multiple possible choices of 𝑎 and 𝑏. To find out the

correct pair of 𝑎 and 𝑏 for wavevector q∥ is known as an unfolding problem. We have

adopted the unfolding scheme by Popescu et al [74] and the details can be found in

the supplementary material in Ref. [76].

For an interface scattering event, the transverse wavevectors for initial state 𝑛 and

final state 𝑚 in the unitcell representation are constrained by,

q𝑛 = q𝑚 + 𝑎Gsc,𝑥 + 𝑏Gsc,𝑦, (3.5)

where 𝑎 and 𝑏 are unknown integers, as wavevectors of initial and final states in

the supercell representation can be unfolded differently. This expression indicates

that the interface scattering can either be a momentum conserved (specular), when

𝑎 = 𝑏 = 0, or momentum non-conserved (diffuse) process for other 𝑎 and 𝑏 values.

Depending on the transverse wavevector of state 𝑛 and state 𝑚, the transmission

probability matrix can be categorized into specular and diffuse transmission parts

𝑇𝑚𝑛(𝜔) = 𝑇s,𝑚𝑛(𝜔) + 𝑇d,𝑚𝑛(𝜔), where

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑇s,𝑚𝑛(𝜔) = 𝑇𝑚𝑛(𝜔), when q∥,𝑛 = q∥,𝑚

𝑇d,𝑚𝑛(𝜔) = 𝑇𝑚𝑛(𝜔), when q∥,𝑛 ≠ q∥,𝑚

(3.6)

The reflection probability matrix can be analogously expressed by, 𝑅𝑙𝑛(𝜔) = 𝑅s,𝑙𝑛(𝜔)+

𝑅d,𝑙𝑛(𝜔), where
)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑅s,𝑙𝑛(𝜔) = 𝑅𝑙𝑛(𝜔), when q∥,𝑛 = q∥,𝑙

𝑅d,𝑙𝑛(𝜔) = 𝑅𝑙𝑛(𝜔), when q∥,𝑛 ≠ q∥,𝑙

(3.7)

The diffuse transmittance for a given incident phonon 𝑛 from the left side is defined

by summing over the scattering probabilities of all possible outgoing states,

𝑇d,𝐿→𝑅(𝜔,Ω𝐿) = ∑
𝑚

𝑇𝐿→𝑅
d,𝑚𝑛 (𝜔) (3.8)

where Ω𝐿 = (𝜃, 𝜑) indicates transmittance is a directional quantity. The polar and
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Figure 3-1: (a) In AGF, the system is partitioned into three parts: two semi-infinite
leads and a rough interface as the device region. The lead region in the supercell,
contains 𝑁uc unitcells and transverse lattice vector Rsc = 𝑁ucRuc. The numbers
0, 1, ... denote the index of repeated cells for left and right leads. The period
lengths along the direction normal to the interface are 𝑎𝑧,𝐿 and 𝑎𝑧,𝑅 for the left and
right lead, respectively. (b) The in-plane wavevector for incident, transmitted and
reflected phonons, q∥,𝑛, q∥,𝑚 and q∥,𝑙. 𝑎 = 0 corresponds to specular transmission,
while 𝑎 ≠ 0 corresponds to diffuse transmission. Similarly, 𝑏 = 0 corresponds to
specular reflection, while 𝑏 ≠ 0 corresponds to diffuse reflection. Note the schematic is
drawn for two-dimensional system for visual clarity and for three-dimensional system
the partitioning and wavevector conservation laws can be analogously defined.

azimuthal angles are defined in a coordinate system where the interface normal lies

along the z-axis, 𝜃 = arccos 𝑣𝑧
⋃︀v⋃︀ , 𝜑 = arctan

𝑣𝑦
𝑣𝑥

. v = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is the group velocity for

incident phonon 𝑛 from the left side and we use 𝐿 → 𝑅 to denote the trajectory of

the phonon. The reason for using the angle of the group velocity rather than the

phase velocity (or wavevector) is that group velocity is a uniquely defined quantity

irrelevant to the choice of in-plane Brillouin zone while not for the phase velocity.

Likewise, the diffuse reflectance for a given initial state 𝑛 from the left side and from

the right side read,

𝑅d,𝛼→𝛼(𝜔,Ω𝛼) = ∑
𝑚

𝑅𝛼→𝛼
d,𝑚𝑛(𝜔) (3.9)
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Figure 3-2: The angle-resolved (a) diffuse transmittance 𝑇𝑑,Si→Ge(ΩSi) from the Si
side and (b) diffuse reflectance 𝑅𝑑,Ge→Ge(ΩGe) from the Ge side at 𝜔 = 5 THz. The
angle-resolved (c) diffuse transmittance 𝑇𝑑,Ge→Si(ΩGe) from the Ge side and (d) diffuse
reflectance 𝑅𝑑,Si→Si(ΩSi) from the Si side at 𝜔 = 5 THz. Ω𝛼 = (𝜃𝛼, 𝜑𝛼), 𝛼 = Si,Ge is
the direction of incident group velocity. The radial coordinate corresponds to the
polar angle 𝜃𝛼 (angle of incidence) and the polar axis corresponds to the azimuthal
angle 𝜑𝛼. (e), (f) The difference between maximum and minimum diffuse scattering
probability as a measure of the anisotropy of diffuse scattering probability. The diffuse
scattering probability is obtained by taking the ensemble average of calculations for
21 structures of 8 ml disordered configurations with a 20×20qsc,∥-point mesh.

where 𝛼 = 𝐿,𝑅. The specular transmittance and reflectance can be similarly defined.

Furthermore, to study the impact of diffuse phonon scattering on interfacial trans-

port, we compute the transmission function Θ(𝜔), which accounts for the total phonon

conduction transmission at a given frequency 𝜔, defined by,

Θ(𝜔) = Θs(𝜔) +Θd(𝜔) (3.10)

Θs(𝜔) and Θd(𝜔) are specular and diffuse transmission function obtained by summing
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over all possible incoming and outgoing states at a given frequency[119],

Θs(𝜔) = ∑
𝑚𝑛

𝑇𝐿→𝑅
s,𝑚𝑛 (𝜔)

Θd(𝜔) = ∑
𝑚𝑛

𝑇𝐿→𝑅
d,𝑚𝑛 (𝜔)

(3.11)

The specular and diffuse reflection function is defined by,

Ξs,𝛼(𝜔) = ∑
𝑚𝑛

𝑅𝛼→𝛼
s,𝑚𝑛(𝜔)

Ξd,𝛼(𝜔) = ∑
𝑚𝑛

𝑅𝛼→𝛼
d,𝑚𝑛(𝜔)

(3.12)

with 𝛼 = 𝐿,𝑅. Note that the transmission function for two sides are the same due

to the time-reversal symmetry of the transmission probability matrix but not for the

reflection function.

3.2.3 Continuum modeling

In addition to the AGF simulation, we also derived analytical formulas for diffuse the

transmittance and reflectance from continuum modeling with details provided in the

Appendix B B. The model assumes scalar acoustic waves and random mass disor-

ders distributed at the interface, and hence neglects mode conversion at the interface.

The model is derived based on perturbation theory and it only takes the density

𝜌𝐿, 𝜌𝑅, bulk modulus 𝜇𝐿, 𝜇𝑅 and number of pairs of swapped atoms per unit area

𝑛 as parameters. The model captures the specific contributions to the total trans-

mittance/reflectance of specular and diffuse scattering processes and allows one to

calculate diffuse and specular transmittance and reflectance components analytically.

We assume a linear dispersion 𝜔 = 𝑐⋃︀q⋃︀, where the sound velocities for the left

and right side are 𝑐𝐿 =
⌈︂
𝜇𝐿⇑𝜌𝐿 and 𝑐𝑅 =

⌈︂
𝜇𝑅⇑𝜌𝑅, respectively. Due to the simple

dispersion relation, the transverse q∥ can uniquely define a forward-moving phonon

state. Thus, we use q∥ and q′
∥

to denote the initial and final states, instead of

using 𝑚 and 𝑛. The momentum for a phonon state in the left side is (q∥, 𝑞𝐿) =

𝜔
𝑐𝐿
(sin𝜃𝐿cos𝜑, sin𝜃𝐿sin𝜑, cos𝜃𝐿), where 𝑞𝐿 is the perpendicular momentum. For a
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Figure 3-3: (a), (b) The diffuse transmittance 𝑇𝑑,𝛼 from one side and the diffuse
reflectance 𝑅𝑑,𝛽 from the other side as a function of the polar angle of the incident
phonon at 𝜔 = 3.3 THz. The markers are obtained by integrating 𝑇𝑑(Ω) and 𝑅𝑑(Ω)
from AGF calculation for 8 ml structures over the azimuthal angle 𝜑 divided by 2𝜋.
The solid lines are predictions from continuum modeling with the number of pairs
of swapped atoms per unit area 𝑛 = 2.78⇑𝑎2 and 𝑎 = 5.527 Å. (c), (d) The average
diffuse transmittance 𝑇𝑑,𝛼(𝜔) from one side and the average diffuse reflectance 𝑅𝑑,𝛽(𝜔)
from the other side as a function of frequency from AGF calculation in solid lines,
compared with DMM in dash-dot lines. (e)-(h) are the specular transmittance and
specular reflectance corresponding to (a)-(d).

specular transmission process from the left side to the right side, the transverse mo-

mentum is conserved. Thus, the corresponding transmitted phonon state on the

right side is (q∥, 𝑞𝑅) = 𝜔
𝑐𝑅
(sin𝜃𝑅cos𝜑, sin𝜃𝑅sin𝜑, cos𝜃𝑅). It follows that the perpen-

dicular velocities for the initial and final state are 𝑣𝐿 = 𝑐𝐿cos𝜃𝐿 = 𝑐𝐿
⌈︂

1 − 𝑐2𝐿⋃︀q∥⋃︀
2⇑𝜔2,

𝑣𝑅 = 𝑐𝑅cos𝜃𝑅 = 𝑐𝑅
⌈︂

1 − 𝑐2𝑅⋃︀q∥⋃︀
2⇑𝜔2, respectively.

From our continuum model, the diffuse transmittance for a given incident state

from the left side writes,

𝑇d,𝐿→𝑅(𝜔,Ω𝐿) = ∫

𝑑2q′
∥

(2𝜋)2
𝑇𝐿→𝑅
d (𝜔,q′

∥
,q∥) (3.13)
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Figure 3-4: The frequency-resolved (a) diffuse and (b) total transmittance/reflectance
from Si and Ge side with different 𝑚Ge⇑𝑚Si from AGF calculation for 8 ml structures
and DMM. 𝜔max is the maximum allowed frequency for non-zero transmission function
Θ(𝜔). 𝜔max = 17.2 THz when 𝑚Ge⇑𝑚Si = 1.1, and 𝜔max = 9.1 THz when 𝑚Ge⇑𝑚Si =

4.0.

where

𝑇𝐿→𝑅
d (𝜔,q′

∥
,q∥) =

4𝜔−2𝑉2

𝜌𝑅𝑣′𝑅
⋃︀𝜌𝐿𝑣′𝐿 + 𝜌𝑅𝑣′𝑅⋃︀

2

𝜌𝐿𝑣𝐿

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

(3.14)

Here, 𝑉2 is a quantity related to density of mixed atoms at interface (see Appendix

B B). Essentially, we have integrated over all possible final states q′
∥

on the right-hand

side. Note that the final transverse momentum is bounded by ⋃︀q′
∥
⋃︀ ≤ 𝜔

𝑐𝑅
.

The diffuse reflectance for a phonon state from the left-hand side is,

𝑅d,𝐿→𝐿(𝜔,Ω𝐿) = ∫

𝑑2q′
∥

(2𝜋)2
𝑅𝐿→𝐿

d (𝜔,q′
∥
,q∥) (3.15)

where

𝑅𝐿→𝐿
d (𝜔,q′

∥
,q∥) =

4𝜔−2𝑉2

𝜌𝐿𝑣′𝐿
⋃︀𝜌𝐿𝑣′𝐿 + 𝜌𝑅𝑣′𝑅⋃︀

2

𝜌𝐿𝑣𝐿

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

(3.16)
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and the transverse momentum of the final state is bounded by ⋃︀q′
∥
⋃︀ ≤ 𝜔

𝑐𝐿
.

If we denote 𝐹 (𝜔) = ∫
𝑑2q′

∥

(2𝜋)2 4𝜔−2𝑉2
𝜌𝐿𝑣

′

𝐿

⋂︀𝜌𝐿𝑣
′

𝐿+𝜌𝑅𝑣′𝑅⋂︀
2 , the diffuse transmittance from one

side and the diffuse reflectance from the other side can be respectively expressed by,

𝑇d,𝑅→𝐿(𝜔,Ω
′

𝑅) =
𝜌𝑅𝑣′𝑅

⋃︀𝜌𝐿𝑣′𝐿 + 𝜌𝑅𝑣′𝑅⋃︀
2𝐹 (𝜔) (3.17)

𝑅d,𝐿→𝐿(𝜔,Ω𝐿) =
𝜌𝐿𝑣𝐿

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2𝐹 (𝜔) (3.18)

It is evident that they are both anisotropic since they depend on perpendicular inci-

dent velocity. Their ratio writes,

𝑇d,𝑅→𝐿(𝜔,Ω′

𝑅)

𝑅d,𝐿→𝐿(𝜔,Ω𝐿)
=
𝜌𝑅𝑣′𝑅
𝜌𝐿𝑣𝐿

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

⋃︀𝜌𝐿𝑣′𝐿 + 𝜌𝑅𝑣′𝑅⋃︀
2 (3.19)

which is not a constant. Thereby, our continuum model suggests that the diffuse

transmittance from one side and the diffuse reflectance from the other side are gen-

erally not equal.

3.3 Results and discussions

We study phonon transport through a disordered [001] Si/Ge interface by creating a

3×3 supercell (along x and y direction). We use the average of Si’s and Ge’s lattice

constants, 𝑎 = 5.527 Å, as the lattice constant in generating the supercell structures

and the Stillinger-Weber inter-atomic potential to compute the dynamical matrix and

Green’s function[120]. The interface is constructed by randomly swapping Si and Ge

atoms with the same distances to the interface and the further away from the interface

the fewer atoms are swapped. At even further distances from the interface, no Si and

Ge atoms are swapped. For instance, when we have 2 layers of Si and 2 layers of

Ge atoms are mixed, 2 pairs of Si and Ge atoms will be swapped in the Si and the

Ge layer closest to the interface and 1 pair of Si and Ge atoms will be swapped in

the Si and the Ge layer secondly closest to interface. In this case, we have a 1|2|2|1

configuration, with each number denoting the number of swapped atoms within the
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same layer. We label such interface structure by 4 ml, in short for 4 mixing layers in

total. Apparently, a larger ml number means a larger degree of disorder. We generate

21 configurations for each given total mixing layers and compute the ensemble average

of the transmission and reflection probability matrix 𝑇𝐿→𝑅
𝑚𝑛 (𝜔), 𝑇𝑅→𝐿

𝑚𝑛 (𝜔), 𝑅𝐿→𝐿
𝑚𝑛 (𝜔)

and 𝑅𝑅→𝑅
𝑚𝑛 (𝜔).

We first examine the angular dependence of ensemble-averaged diffuse transmit-

tance and reflectance at a given frequency to ascertain whether or not they are

isotropic. In Fig. 3-2, we find strong angle dependence of diffuse transmittance and

diffuse reflectance from the Si side as well as the Ge side, contradicting the assump-

tion of isotropic reflectance and transmittance underlying the DMM. The diffuse

reflectance from Ge to Ge is found to be overall higher than the diffuse transmittance

from Si to Ge. The diffuse reflectance from Si to Si is in a similar range compared with

the diffuse transmittance from Ge to Si, although their explicit angle dependences are

drastically different.

If the DMM is valid, the diffuse transmittance from one side and the diffuse re-

flectance from the other side should be isotropic. We compute the difference between

the maximum and minimum scattering probability at different frequencies, as a mea-

sure of anisotropy, shown in Fig. 3-2 (e) and (f). We observe that the diffuse scattering

probability generally varies in a wide range. For example, the diffuse reflectance from

the Si side at high frequencies ranges almost from zero to one. Hence, we conclude

the diffuse transmittance and reflectance from both sides are highly anisotropic.

Additionally, we find out that the patterns of diffuse transmittance and diffuse

reflectance do not have two perfect diagonal reflection axes as the perfect Si/Ge [001]

interface structure does. This is the consequence of ensemble average of disordered

structures, where each structure might have broken the reflection symmetry, and it

is not guaranteed to recover the original symmetry after ensemble average. Still, we

can clearly observe a clover-like pattern for the diffuse transmittance and reflectance

from the Si side, which originates from the pmm symmetry of the phonon bands for

a perfect [001] Si/Ge interface.

In particular, to quantitatively study how the diffuse transmittance and diffuse
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reflectance depend on the polar angle, we integrate the angle-dependent scattering

probability over the azimuthal angle. As shown in Fig. 3-3 (a), at 𝜔 = 3.3 THz, the

diffuse transmittance from Si is lower than the reflectance from Ge, while in Fig. 3-3

(b), the diffuse transmittance from Ge is higher than the diffuse reflectance from Si. It

is interesting to note that the continuum model agrees well with the results from AGF

when incident states are from Si, suggesting the model captures the physics of diffuse

phonon scattering. On the contrary, the continuum model predicts a different diffuse

scattering probability profile compared with the calculation from AGF when incident

phonons are from Ge. From the analytical expression in the continuum model for

diffuse scattering probability (Eq. 3.13 and Eq. 3.15), we learn that the peak in diffuse

transmittance and reflectance profile corresponds to the critical angle for total internal

reflection (37 degrees). In comparison, the scattering probability profile from AGF has

two peaks (9 degrees and around 50 degrees). In Fig. 3-3 (e) and (f), we find that the

specular transmittance and reflectance have a much stronger dependence on the polar

angle compared with their diffuse counterparts. Our continuum model for specular

scattering probabilities again shows good agreement with the AGF calculation except

incapable of capturing the multiple peaks arising from total internal reflection. Note

that the continuum modeling is based on a scalar field, where the polarization vectors

are not included. The difference between continuum modeling and AGF calculation

suggests that without considering mode conversion among different polarizations, the

scalar continuum model cannot accurately describe the actual number of available

diffuse transmission and reflection pathways.

To study the diffuse transmittance at different frequencies, we define an average

diffuse transmittance for phonon modes with the same frequency by,

𝑇d,𝛼(𝜔) =
∑
+

𝑛 𝑇
𝛼→𝛽
d,𝑛 (𝜔)𝑣𝑧,𝑛

∑
+

𝑛 1 ⋅ 𝑣𝑧,𝑛
=

Θd(𝜔)

Θbulk,𝛼(𝜔)
(3.20)

where 𝑣𝑧,𝑛 is the group velocity normal to the interface. Θbulk,𝛼(𝜔) is the transmission

function for bulk material 𝛼 (we use two leads and device all consisting of 𝛼 atoms in

AGF calculation). The average total transmittance including specular transmittance
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and diffuse transmittance is defined by, 𝑇𝛼(𝜔) =
Θ(𝜔)

Θbulk,𝛼(𝜔)
. The average diffuse and to-

tal reflectance are 𝑅d,𝛼(𝜔) =
Ξd,𝛼(𝜔)

Θbulk,𝛼(𝜔)
and 𝑅𝛼(𝜔) =

Ξ𝛼(𝜔)
Θbulk,𝛼(𝜔)

, respectively. Note that

the sum of transmittance and reflectance is one, yet the sum of diffuse transmittance

and diffuse reflectance is less than one, as not all phonons are diffusely scattered.

On the other hand, the sum of transmittance and reflectance given by DMM is al-

ways unity. Therefore, when we compare the diffuse transmittance/reflectance with

transmittance/reflectance by DMM, it is entirely possible their values do not match.

However, what we are more interested in answering is whether or not the phonon loses

its memory, i.e., whether the diffuse transmittance from one side equals the diffuse

reflectance from the other side[121].

In Fig. 3-3 (c), we find that the diffuse transmittance from Si is lower than the

diffuse reflectance from Ge for all frequencies. They both deviate from DMM given by

Eq. 3.4 at low frequencies. At high frequencies, the DMM’s prediction is close to the

reflectance from Ge. In Fig. 3-3 (d), the diffuse transmittance from Ge is lower than

reflectance from Si except for low frequencies. And they are both different from DMM.

The crossing point at 4.4 THz for transmittance and reflectance suggest that at this

frequency, the average transmittance from Ge side is the same with average diffuse

reflectance from Si side, although they individually have strong angle dependence.

The gap between diffuse transmittance from one side and diffuse reflectance from

the other side suggests that diffuse phonon scattering depends on the initial state

such that phonons actually do not lose their memory of origin. In Fig. 3-3 (g) and

(h), we see that the specular scattering probability is generally much higher than the

diffuse scattering probability at low frequencies, suggesting that at low frequencies,

the interface scattering is almost all specular. This trend is also consistent with

previous findings[108, 122].

An important factor that is relevant to the diffuse phonon scattering is the amount

of dissimilarity between two materials. According to Pohl and Swartz[8], DMM pre-

dicts that diffuse scattering increases thermal boundary resistance of the interface

between similar solids, suggesting that diffuse scattering plays a significant role when

the mass ratio between the two materials is close to one. In Fig. 3-4, we present the
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frequency-resolved transmittance and reflectance with different mass ratios 𝑚Ge⇑𝑚Si

(we fix the mass 𝑚Si and vary the mass 𝑚Ge). We find that when the two sides are

similar, the diffuse transmittance from one side is similar to the diffuse reflectance

from the other side. This partially aligns with the assumptions of DMM, although

the diffuse transmittance and diffuse reflectance still have strong anisotropy in direc-

tions (see Fig. 6 in the supplementary material in Ref. [76]). When the mass ratio

is large, the transmittance from one side is no longer similar to the reflectance from

the other side, indicating that the scattering probability strongly depends on where

the initial states are from. As for the total transmittance and reflectance, due to the

inclusion of the specular scattering probability, the difference between transmittance

from one side and reflectance from the other side is enlarged. It is interesting to

note that when two sides are similar, although DMM cannot correctly describe either

scattering probability, it is close to the average of the total transmittance from one

side and the total reflectance from the other side. When the two sides are dissimilar,

the DMM’s prediction becomes similar to the total transmittance in Ge side at low

frequencies and the total transmittance in Si side at high frequencies. This suggests

that for certain cases, DMM is able to roughly describe the total transmittance from

one side in a certain frequency range but not for all frequencies.

To study how much memory the phonon loses regarding its origin in a quantitative

manner, we define a similarity measure by,

𝑆𝛽(𝜔) = exp
⎛

⎝
−
⋂︀𝑇d,𝛼(𝜔) −𝑅d,𝛽(𝜔)⋂︀

𝑅d,𝛽(𝜔)

⎞

⎠
(3.21)

where 𝑇𝛼(𝜔) is the diffuse transmittance from one side and 𝑅𝛽(𝜔) is the diffuse

reflectance from the other side, and the final states for these scattering processes are

on the 𝛽 side. 𝑆𝛽 → 1 means high similarity between the diffuse transmittance and

reflectance when the final state is on the 𝛽 side, i.e. phonon completely loses its

memory of origin. 𝑆𝛽 → 0 means low similarity between the diffuse transmittance

from one side and diffuse reflectance from the other side, and phonon does not lose

its memory. A large mass ratio generally lead to a smaller similarity measure. We
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Figure 3-5: The similarity between the diffuse transmittance from one side and the
diffuse reflectance from the other side. The blue lines correspond to the cases when
the final states are on the Ge side and the orange lines correspond to the cases where
the final states are on the Si side. The diffuse transmittance and reflectance for
evaluating the similarity are from the data presented in Fig. 3-4 (a).

also find that the similarity measure depends which side the final state resides at. For

example, in Fig. 3-5 (b), we find that at 𝜔 = 0.39𝜔max, when phonon is scattered into

Si side, it loses its memory. However, this is not true when phonon is scattered into

Ge side. In comparison, for DMM, the similarity is always one when the final states

are on either side of the interface.

Lastly, we want to discuss the diffuse phonon scattering’s role in interfacial trans-

port. In Fig. 3-6 (a), we plot the total transmission function as a function of frequency

with different numbers of mixing layers. And we find that the total transmission can

either be enhanced or reduced compared with the perfect Si/Ge interface as a result

of the competition between the specular transmission versus diffuse transmission.

From Fig. 3-6 (b) and (c), we find as the degree of disorder increases, the specular

transmission decreases while the diffuse transmission increases. In other words, the
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Figure 3-6: (a) The total transmission function, (b) the specular transmission function
and (c) the diffuse transmission function versus phonon frequency for [001] Si/Ge
interfaces from AGF. Inset: the ensemble-averaged mass profile as a function of atom
layer number at the interface region obtained by averaging the mass of atoms within
the same layer. The right axis is the Ge fraction in each atom layer. The distance
between adjacent atom layers is 𝑎⇑4 = 1.382 Å. (d)-(f) The total, specular and diffuse
reflection function from the Si side. (g)-(i) The total, specular and diffuse reflection
function from the Ge side.

disorders remove specular channels while creating new diffuse channels. As a result,

we do not observe significant changes in the transmission function due to atomic mix-

ing. The opposite trends for specular and diffuse transmission versus the degree of

disorder eventually leads to the maximum thermal conductance for 4 ml structures.

It is interesting to note that similar enhancements for transmission enabled by disor-
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ders have been discovered in electron transport in heterostructures[55]. From Fig. 3-6

(d)-(i), we learn that the increasing amount of disorders always reduce the specular

reflection function and increases the diffuse reflection function. Thus, the disorders

can both increase the diffuse transmission (enhancing the interface conductance) and

the diffuse reflection (worsening the interface conductance). This competition is an-

other reason why we cannot observe significant enhancement of thermal conductance

by disorders. Our current analysis is based on elastic scattering, yet phonon an-

harmonicity can contribute to interfacial transport by enabling “vertical coupling”

between conduction channels of different frequencies. There are several works on

understanding the anharmonicity’s role in thermal interface conductance for abrupt

interfaces[123, 124, 125, 126], but how diffuse scattering and anharmonicity affect

heat conduction channels remains unclear.

3.4 Conclusion

Through AGF calculation, we have demonstrated that the diffuse phonon scattering

by a single disordered interface depends both on initial incoming states as well as

the final outgoing states. The transmittance and reflectance strongly depend on the

polar angle of group velocity. Also, the transmittance from one side and reflectance

from the other side are generally different. That is to say, phonons do not lose their

memory after diffuse scattering by a single interface. When two materials are similar,

the diffuse transmittance from one side and the diffuse reflectance from the other side

become similar to each other. However, the total transmittance from one side and

total reflectance from the other side are still different.

The number of specular transmission channels for interfacial transport is always

reduced by interfacial disorders while new transmission channels are created by dif-

fuse phonon scatterings. The competing roles of specular and diffuse transmission

can lead to either enhanced or reduced transmission function and interfacial thermal

conductance.

We also derived the expressions for transmittance and reflectance for diffuse scat-
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tering processes based on the continuum approximation, which works reasonably well

in the low-frequency range. The model leads to different analytical expressions for

diffuse transmittance from one side and diffuse reflectance from the other side. Our

model also shows that the diffuse transmission opens up new transmission channels

even for those states above the critical angle for total internal reflection.
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Chapter 4

Phonon Anderson localization in

aperiodic superlattices

4.1 Introduction

The ability to control phonon is of great importance in manipulating nanoscale

thermal transport[1] and delaying quantum decoherence in quantum information

science[21]. Phonons in certain disordered nanostructures with feature sizes simi-

lar to phonon wavelength experience Anderson localization[14], where the phonons

stay spatially localized due to strong constructive wave interferences. Several theoret-

ical studies on phonon Anderson localization show that random mass disorders cause

the exponentially decaying transmittance with system length[127, 128, 129, 130, 131].

However, experimental observation of phonon Anderson localization is difficult

because of the broadband nature of phonons and strong phase-destroying inelastic

scattering. Additionally, for three-dimensional materials, the number of available

propagating paths can easily surpass the number of localized paths. Phonon Anderson

localization has only been experimentally observed in superlattices with random dots

below 50 K[19]. However, the required extremely low temperature greatly limits the

application of Anderson localization.

To experimentally observe phonon Anderson localization at higher temperatures,

we propose several strategies. We need atomic-scale interface roughness that scat-
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ters high-frequency phonon efficiently. The roughness cannot be too large, otherwise

the diffusive interface scattering will destroy the phases for remaining phonons. In

addition, we use alloy to further remove high-frequency phonons’ contribution to

transport. More importantly, we use aperiodicity as a type of disorder to induce

strong interference among scattered waves. The interfaces in aperiodic structure also

strongly scatter phonons with middle wavelengths.

We experimentally demonstrate that phonon Anderson localization exists up to

200 K in aperiodic Si/Si0.2Ge0.8 superlattices. Our simulation shows that high-

frequency phonons are strongly scattered by interface roughness and alloys, while

low-frequency phonons form constructive interferences and their transmittance expo-

nentially decay with system length. The thermal conductivity from simulation and op-

tical measurements both show a peak in its length dependence curve, a unique feature

attributed to Anderson localization. At higher temperatures, the phonon interferences

are destroyed by phonon-phonon scattering and thermal conductivity monotonically

increases with length, where phonon transport is in the classical ballistic-diffusive

regime. Our work validates the theoretical understanding of phonon wave-particle

duality as well as the universality of Anderson localization of waves. It also pro-

vides a simple yet practical strategy to dynamically convert propagating phonons to

localized phonons.

4.2 One-dimensional scalar phonon modeling

According to the scaling theory of localization by Abrahams et. al.[132], electron is

always localized in one-dimensional disordered systems at 𝑇 = 0 K. For phonon trans-

port within the coherence length 𝑙c, such argument also applies. However, how the

localization length depends on different phonon modes and the degree of disorder re-

mains unknown. In the section, we conduct one-dimensional scalar phonon modeling

to answer these questions.

76



Figure 4-1: The schematic for one-dimensional aperiodic structures in the transfer
matrix calculation.

4.2.1 Formalism

We simulate the transmission coefficients for scalar phonons through randomly ape-

riodic superlattices using transfer matrix method. The details of the transfer matrix

method can be found in Ref. [133]. We outline the methodology for the sake of

completeness in the following.

As shown in Fig. 4-1, the first and the last layer, 𝐴0 and 𝐴𝑁 , are both semi-infinite

made of material A. For the rest of the layers, the layer thickness 𝐴𝑖,𝐵𝑖 ∈ (︀𝐿1, 𝐿2⌋︀

are randomly chosen for each layer according to a uniform distribution function. We

denote the starting and the ending position for layer 𝐵𝑖 with 𝑥𝑖 and 𝑥′𝑖 and thus

we have 𝐿1 ≤ 𝑥′𝑖 − 𝑥𝑖 ≤ 𝐿2. The index 𝑖 ranges from 1 to 𝑁 − 1 for material A and

from 1 to 𝑁 for material B. The standard deviation for the layer thickness of two

media are 𝜎𝐴, 𝜎𝐵 = 𝐿2−𝐿1
⌋︂

12
. The average layer thickness for 𝐴 and 𝐵 are 𝑙 = 𝐿1+𝐿2

2 . The

phonons within the layer 𝐴0 can be expressed in terms of plane waves, Ψ𝐴0 = 𝑎𝐴0𝑒
𝑖𝑘𝐴𝑥+

𝑏𝐴0𝑒
−𝑖𝑘𝐴𝑥, where the wavevector magnitude is 𝑘𝐴 = 𝜔

𝑐𝐴
(we consider normal incidence)

and 𝑐𝐴 =
⌈︂
𝜇𝐴⇑𝜌𝐴 is the group velocity (𝜇𝐴 is the bulk modulus). On the other end

of the structure, we have the plane-wave solution, Ψ𝐴𝑁
= 𝑎𝐴𝑁

𝑒𝑖𝑘𝐴𝑥 + 𝑏𝐴𝑁
𝑒−𝑖𝑘𝐴𝑥. The

coefficients in front of plane waves for the 𝑁 th layer and the 0 th layer are related

via,
⎛
⎜
⎝

𝑎𝐴𝑁

𝑏𝐴𝑁

⎞
⎟
⎠
=
⎛
⎜
⎝

𝑀11 𝑀12

𝑀21 𝑀22

⎞
⎟
⎠

⎛
⎜
⎝

𝑎𝐴0

𝑏𝐴0

⎞
⎟
⎠

(4.1)

where the two-by-two matrix is the transfer matrix and its matrix elements are related

to the transmission and reflection coefficients, 𝑀11 = 1
𝑡∗𝑁0

, 𝑀21 = −
𝑟∗𝑁0

𝑡∗𝑁0
, 𝑀21 = −

𝑟𝑁0

𝑡𝑁0

and 𝑀22 = 1
𝑡𝑁0

. The transmission and reflection probability are, 𝑇𝑁0 = ⋃︀𝑡𝑁0⋃︀
2 and

𝑅𝑁0 = ⋃︀𝑟𝑁0⋃︀
2.

Specifically, the transfer matrix is the product of the transfer matrix associated
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with each interface and Eq. 4.1 can be expressed by,

⎛
⎜
⎝

𝑎𝐴𝑁

𝑏𝐴𝑁

⎞
⎟
⎠
= h∗(𝜑′𝐴𝑁

)M𝑁h(𝛼𝐴𝑁−1
)M𝑁−1h(𝛼𝑁−2)⋯M2h(𝛼𝐴1)M1h(𝜑𝐴1)

⎛
⎜
⎝

𝑎𝐴0

𝑏𝐴0

⎞
⎟
⎠

(4.2)

where the matrices M𝑖 and h read,

M𝑖 =
⎛
⎜
⎝

𝑒𝑖𝛼𝐵𝑖cosh2𝛾 − 𝑒−𝑖𝛼𝐵𝑖 sinh2𝛾 2𝑖sin𝛼𝐵𝑖
cosh𝛾sinh𝛾

−2𝑖sin𝛼𝐵𝑖
cosh𝛾sinh𝛾 𝑒−𝑖𝛼𝐵𝑖cosh2𝛾 − 𝑒𝑖𝛼𝐵𝑖 sinh2𝛾

⎞
⎟
⎠

(4.3)

h(𝛼𝐴𝑖
) =

⎛
⎜
⎝

𝑒𝑖𝛼𝐴𝑖 0

0 𝑒−𝑖𝛼𝐴𝑖

⎞
⎟
⎠

(4.4)

with the phase 𝜑′𝐴𝑁
= 𝑖𝑘𝐴𝑥′𝐴𝑁

and 𝜑𝐴1 = 𝑖𝑘𝐴𝑥𝐴1 , the phase shift in each layer 𝛼𝐵𝑖
=

𝑘𝐵(𝑥′𝑖 − 𝑥𝑖), 𝛼𝐴𝑖
= 𝑘𝐴(𝑥𝑖+1 − 𝑥′𝑖), sinh𝛾 = 1

2 (
⌋︂
𝑍 − 1

⌋︂

𝑍
) and the acoustic impedance

𝑍 =
𝜌𝐵𝑐𝐵
𝜌𝐴𝑐𝐴

. We further denote the average phase shifts 𝛼𝑋 = ∐︀𝛼𝑋𝑖
̃︀ with 𝑋 = 𝐴,𝐵 and

the corresponding standard deviation 𝜎𝑋 = (∐︀𝛼2
𝑋𝑖
̃︀ − ∐︀𝛼𝑋𝑖

̃︀2)1⇑2.

Conventionally, the localization constant is defined by the logarithm of the trans-

mission amplitude divided by the number of layers[134],

𝜆 = −
1

𝑁
ln(⋃︀𝑡𝑁0⋃︀) (4.5)

where 𝑁 is the number of 𝐵 layers. The inverse of the localization constant describes

after how many layers phonons are almost fully localized. We can also compute the

localization length by multiplying the average layer thickness,

𝜉 = −
𝑁(𝑙𝐴 + 𝑙𝐵)

ln(𝑇𝑁0)
=

𝑙

𝜆
(4.6)

The localization constant can be analytically computed. The analytical expression

78



for the localization constant writes[133],

𝜆 =

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

1
2
sin22𝛾
1−𝑎2𝑟

(sin2𝛼𝐴𝜎2
𝐵 + sin2𝛼𝐵𝜎2

𝐴) , 𝜔 < 𝜔𝑐

2ln (cosh𝛾) , 𝜔 ≥ 𝜔𝑐

(4.7)

where 𝑎𝑟 = cos𝛼𝐴cos𝛼𝐵 − sin𝛼𝐴sin𝛼𝐵(cosh2𝛾 + sinh2𝛾) and the critical frequency 𝜔𝑐

is the crossing point of the two expressions. It is easy to show that with increasing

impedance 𝑍, the localization constant is rapidly increasing (localized in a shorter

length scale).

The above expressions are applicable to normal incidence. For oblique incidence

from 𝐴0, one can simply change the acoustic impedance 𝑍 with

𝑍(𝜃) =
𝜌𝐵𝑐𝐵

{︂

1 −
𝑐2𝐵
𝑐2𝐴

sin2𝜃

𝜌𝐴𝑐𝐴
⌋︂

1 − sin2𝜃
(4.8)

where 𝜃 is the incident angle.

The transmission function can be computed by,

Θ(𝜔) = 𝜋𝐴𝐷𝐴(𝜔)𝑐𝐴∫
1

0
sin𝜃𝑇𝑁0(𝜔, sin𝜃)𝑑sin𝜃 (4.9)

where 𝐴 is the transverse cross-sectional area, 𝐷𝐴(𝜔) =
𝜔2

2𝜋2𝑐3𝐴
is the phonon density

of states and 𝑇𝑁0(𝜔, sin𝜃) = 𝑒−2𝑁𝜆(sin𝜃) is the transmission probability. The thermal

conductance 𝐺 can be computed using Landauer-Büttiker formalism mentioned in

Chapter 1 and the thermal conductivity is given by 𝜅 = 𝐺𝐿.

4.2.2 Results and discussions

From the analytical expression in Eq. 4.7, we learn that the localization length is

highly sensitive to the impedance 𝑍. We list the localization lengths in the strong-

disorder regime (𝜔 > 𝜔𝑐) for common superlattices in Table 4.1. The impedance

for Si/Ge and Si/Si0.2Ge0.8 are slightly larger than that of AlAs/GaAs. However,

their inverse localization constants are over one order of magnitude smaller than that
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Table 4.1: The Anderson localization length at normal incidence
Materials 𝜌𝐴(kg⇑m3) 𝑐𝐴(m⇑s) 𝜌𝐵(kg⇑m3) 𝑐𝐵(m⇑s) 𝑍(○) (︀𝜆(𝜔 > 𝜔𝑐)⌋︀

−1

Si/Ge 2333 8433 5323 5400 1.4610 28.00
Si/Si0.2Ge0.8 2333 8433 4725 5732 1.3765 39.34
AlAs/GaAs 3720 6400 5320 4730 1.0569 1305

of AlAs/GaAs. If the inverse localization constant (or localization length) is too

large, it can be even longer than the inelastic mean free path such that the phase-

destroying phonon-phonon interaction makes localization disappear. Thus, the expo-

nential decay of thermal conductance due to phonon Anderson localization in Si/Ge

or Si/Si0.2Ge0.8 is potentially much easier to observe experimentally with shorter sam-

ples.

In Fig. 4-2 (a), we find the localization length decreases with increasing frequency

at low frequencies and phonons at low frequencies are in the weak-localization regime

(𝜔 < 𝜔𝑐). In particular, the localization length diverges with 𝜔−2 when 𝜔 → 0. At

higher frequencies, the phase shift at each layer is greater and the interferences among

scattering paths are enhanced. The strong interferences lead to the strong localization

regime, where the localization length 𝜉 becomes independent of the frequency. The

numerical results agree nicely with the analytical expression thus we use the analytical

expression for localization length in the following calculation.

We observe that the angle of incidence has a strong impact on the localization

length, shown in Fig. 4-2 (b). This is because the impedance 𝑍(𝜃) increases with inci-

dent angle 𝜃 thus it becomes easier to localize phonons within a shorter distance with

high incident angles. At the same incident angle, the higher frequency corresponds

to stronger phase shifts and interferences, thus a smaller localization length. More-

over, changing incident angle can also trigger the transition from weak localization

to strong localization because the effective impedance changes drastically.

We present the thermal conductivity versus length with different degree of disorder

at 300 K in Fig. 4-2 (c). We can identify similar trends with slightly changed the

maximum layer thickness 𝐿2. In the strongly localized regime, the localization length

is independent of frequencies and the configurations, thus the conductance is almost

80



Figure 4-2: (a) The localization length in the weak-disorder and strong-disorder
regime. The dots are from numerical transfer matrix calculation and the solid line
is from the analytical expression. (b) The localization length versus the incident an-
gle. (c) The length-dependent thermal conductivity with different maximum layer
thickness 𝐿2 at 300 K. (d) The length-dependent thermal conductivity at different
temperatures. In all calculations, 𝐿1 = 𝑎, where 𝑎 is the lattice constant of Si. In
(a), (b) and (d), 𝐿2 = 8 𝑎. A degeneracy factor of 3 for phonon density of states is
multiplied when evaluating the thermal conductivity.
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independent of the degree of disorder. As a result, the thermal conductivity is higher

with a larger average layer thickness.

In Fig. 4-2 (d), we show the thermal conductivity versus length at different temper-

atures. At high temperatures, high-frequency phonons are excited, and those phonons

are in strong localization regime thus the significant decay of thermal conductivity can

be observed. At low temperatures, those low-frequency phonons that are only weakly

localized contribute the most to transport, thus the thermal conductivity decay is

slower than high temperatures.

The scalar phonon model is essentially a toy model that enables us to conduct an

order of magnitude analysis and understand the angular and frequency dependence of

localization lengths. However, such model has several limitations. First, it cannot de-

scribe phonon polarization, which means that the scattering between different phonon

branches are neglected. Second, only acoustic phonons are included and the optical

phonons are neglected, which can overestimate the thermal conductivity since the

acoustic phonons usually have higher group velocities than optical phonons. Last but

not least, the interface roughness, which is commonly seen in practical heterostruc-

tures, is neglected. The interface roughness changes phonon transport through layered

structure from 1D to 3D, where phonons are more difficult to be localized accord-

ing to the scaling theory[132, 34]. We are interested in predicting the emergence of

Anderson localization quantitatively thus a more rigorous method is needed.

4.3 Atomistic Green’s function simulation

We use the atomistic Green’s function introduced in Chapter 3 to study the thermal

conductivity in aperiodic superlattices, which includes specific atomic structures, full

phonon dispersion relations and interface roughness. We choose Si and Ge atoms

to construct the superlattice due to their large mass contrast (large impedance).

However, Si and Ge have a large lattice mismatch hence making the Si/Ge superlattice

difficult to realize in experiment. Therefore, we choose the Si/Si𝑥Ge1−𝑥 rather than

Si/Ge, which greatly reduces the induced strain. The alloys structure of Si𝑥Ge1−𝑥
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can significantly scatter high-frequency phonons and reduce their contribution to

transport, as those phonons usually have small inelastic mean free paths and are

difficult to localize.

We randomly choose the layer thickness for Si and Si0.2Ge0.8 within the range,

𝐿 ∈ (︀𝐿min, 𝐿max⌋︀, where the minimal layer thickness 𝐿min = 𝑎 and 𝑎 is Si’s lattice

constant1. In Fig. 4-3, we compare the thermal conductivity as a function of the total

length with different maximal layer thickness 𝐿max. In the Si0.2Ge0.8 alloy layer, the

Si and Ge atoms are randomly distributed according to the atomic fraction. The solid

line are the fitted curves to the expression proposed by Wang et. al.[135],

𝜅(𝐿) = 𝐺0
Λ𝐿

Λ +𝐿
exp(−

𝐿

𝜁
) (4.10)

where 𝐺0 is a characteristic thermal conductance, Λ can be interpreted as the phonon

mean free path and 𝜁 is the decaying length of the thermal conductance (half the

phonon localization length 𝜉). We find that although the thermal conductivity fluc-

tuates among specific disordered configurations, the length dependence of thermal

conductivity follows the same trend indicated by the above expression. At short

length scale, the phonon travels coherently with very weak back scattering due to the

limited number of interfaces. When the number of interfaces increases, the multiple

possible scattering paths are inferencing with each other. In the disordered layered

medium with increasing layer number, although the number of theoretically available

paths increases, the number of paths that allows the phonon to travel through all lay-

ers is much smaller than those paths that let phonon come back. Whenever we have

a path that allows phonon travel relatively far from its origin, there is always a time-

reversal path available for phonon to come back. Such pair of time-reversal paths form

constructive paths, and boost reflection probability while reducing transmission prob-

ability. This makes the transmission probability exponentially decay with increasing

number of interfaces. Thus, the thermal conductivity starts to decrease according to

the scaling 𝐿𝑒−𝐿⇑𝜁 at the large length 𝐿. Since the transport transits from ballistic

1We have assumed the Si0.2Ge0.8 has the same lattice constant of Si.
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Figure 4-3: Thermal conductivity of Si/Si0.2Ge0.8 aperiodic superlattices with different
𝐿max. The dots correspond to random configurations for a given 𝐿max. The solid lines
are the fitted curve using the expression 𝜅 = 𝑎𝐿

𝑏+𝐿𝑒
−𝐿⇑𝑐.

transport to the localized transport, there is a peak in thermal conductivity versus

length curve.

The phonon-phonon interaction is a phase-destroying process which can let the

interference disappear. The inelastic mean free path, which describes the average

traveling distance before being scattered by other phonons, is a measure of the in-

elastic scattering strength. A larger inelastic mean free path suggests weaker inelastic

scatterings. We compare the ab initio phonon-phonon scattering mean free path with

the mode-resolved localization length 𝜉 = −2𝐿⇑ln⋃︀𝑇𝑖(𝐿)⋃︀, where 𝑇𝑖(𝐿) is the transmis-

sion probability for phonon state 𝑖 through the sample of length 𝐿 at 200 K2. From

Fig. 4-4, we find that the localization length generally decreases with increasing fre-

quency. The localization length is generally smaller than the inelastic mean free path

except near 4 THz and 6 THz, suggesting the localization is weakly affected by the

inelastic scattering. The inelastic mean free path scales with temperature Λin ∝ 1⇑𝑇

while the localization is temperature-independent. Thus, with increasing tempera-

2The inelastic mean free path data is provided by Qian Xu and the detail for the computation
can be found in Ref.[136].
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Figure 4-4: The mode-resolved localization length compared with the inelastic mean
free path due to phonon-phonon scattering with 𝐿max = 8𝑎 at 200 K.

tures, the inelastic effect becomes predominant and localization will be eventually

destroyed by those inelastic scattering processes.

In Fig. 4-5, we specifically study a specific disordered configuration with 𝐿max = 8𝑎.

We find that the interface roughness has a minor effect in thermal conductivity. We

also separate the contributions of specular transmission and diffuse transmission to

the conductance. Accordingly, the specular and diffuse thermal conductivity is ob-

tained by product of the length and the corresponding conductance. We find that the

diffuse thermal conductivity decreases faster than the specular thermal conductivity.

With a longer length, the thermal conductivity is mainly due to specular phonons.

That is to say, the incident and outgoing phonons has to have the same transverse

momentum, although the alloy structures inside the sample never has the correspond-

ing transverse symmetry. This is because the high-frequency phonons are also diffuse,

and their localization lengths are generally smaller. After several layers, those high-

frequency phonons are fully localized. The remaining low-frequency phonons are all

specularly transmitted phonons. In periodic superlattice, the interface roughness

strongly scatters high-frequency phonons but cannot localize phonons. Thus, even-

tually, some phonons (especially low-frequency phonons) can transmit through the
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Figure 4-5: The specular and diffuse thermal conductivity versus length with 𝐿max =

8𝑎 with and without interface roughness. We use a 2×2 transverse cell with 2 ml
structure for rough interfaces.

periodic superlattices, and they can be either specular or diffuse. However, using

aperiodic system above certain thickness can guarantee that outgoing phonons have

the same transverse momentum as incident phonons. In a way, we create more order

in transport using more disorders.

The peaks in the length dependence curve of thermal conductivity from various

calculations give us confidence that it might be possible to observe the Anderson

localization in such aperiodic system experimentally. In particular, the calculation

indicates that the decay of thermal conductivity happens at very small 𝐿, which

means that we can potentially observe the peak of thermal conductivity with several

short samples that are easy to grow.
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Figure 4-6: The STEM image for aperiodic samples grown on Si substrate using
molecular-beam epitaxy.

4.4 Experimental validation

4.4.1 The sample preparation

We provide the atomic structures used in the atomistic Green’s function calculation

for Fig. 4-5 to Rui Pan and Professor Hong Lu, and they use molecular-beam epi-

taxy to grow four aperiodic superlattice samples with different number of layers on

Si substrates. From the scanning transmission electron microscope image shown in

Fig. 4-6, we found that the aperiodicity is clearly visible and the interface is not

atomically flat. However, from our calculation, we learn that a modest amount of

interface roughness do not destroy Anderson localization. We proceed to measure the

thermal conductivity of thin films using optical characterization methods.

4.4.2 Frequency-domain thermoreflectance

We choose the frequency-domain thermoreflectance method to measure the length

dependence of thermal conductivity. The Si and Ge have relatively large penetration

depths (larger than sample thickness) for light absorption, which induces complicated

electron-phonon interactions and carrier generations and combinations, and makes the

heat transfer analysis complicated. We thus sputter a gold thin film of 96 nm on top

of the aperiodic film to absorb the laser power to heat up the sample. The frequency-

domain thermoreflectance setup situated at NanoEngineering lab is built by Aaron
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Figure 4-7: Representative frequency-domain thermoreflectance signals with different
radii for the sample with 22.5 nm total thickness at 𝑇 = 260 K.

Schmidt. It has a 405 nm pump with modulation frequency ranging from 5 KHz to

50 MHz. A 532 nm probe is used to probe the reflectance change due to temperature

change. In experiment, we use pump power of 20 mW and a probe power of 5 mW.

More details of the instrument can be found in Ref. [137].

In Fig. 4-7, we show the FDTR signals for the same sample with different pump

beam radii. The phase lag describes the phase angle of the complex temperature

responses on the metal surface. We fit the data with the same thermal transport

properties and with different radii. The initial guess for beam radii can be known

from the beam offset measurement.

In Fig. 4-8 (a), we have shown the length dependence of thermal conductivity

from FDTR measurements at temperatures less or equal to 200 K. The curves are the

fitting results using Eq. 4.10. The peaks in thermal conductivity versus length curves

are a strong evidence of Anderson localization. At 200 K, the thermal conductivity

is almost not changing with system length. In Fig. 4-8 (b), we show the thermal

conductivity at higher temperatures. The thermal conductivity all increases with

length, which is a feature of incoherent classical size effect.

If we plot the thermal conductivity for different samples versus temperature, we

find that the thermal conductivity of the longest sample has very low thermal conduc-

tivity compared with shorter samples below 200 K. However, its thermal conductivity

suddenly increases to become the highest among all samples above 200 K. The curve
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Figure 4-8: The thermal conductivity measured by FDTR in aperiodic layered
medium versus length (a) at low temperatures and (b) at high temperatures.

Figure 4-9: The thermal conductivity of different aperiodic samples versus tempera-
ture.

of 𝜅 versus 𝑇 has crossings with other samples. The crossings suggest the transition

from localized transport at low temperature and ballistic-diffusive transport at high

temperatures. Thus, we conclude that the Anderson localization exists up to 200 K.

4.5 Conclusion

We have studied the phonon Anderson localization in aperiodic superlattices with

scalar phonon modeling, atomistic Green’s function simulation and frequency-domain

thermoreflectance method. We learn that a larger acoustic impedance of the two con-
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structive materials can lead to a smaller localization length. In Si/Si0.2Ge0.8 aperiodic

superlattices, the alloying scattering effectively scatter high-frequency phonons and

make the low-frequency phonons dominate the transport. The simulations and ex-

periments both show the peak in thermal conductivity, which is a strong evidence

of Anderson localization. We also experimentally find the localization-delocalization

temperature is around 200 K. Our work provides insights in using aperiodicity to

manipulate phonons in practical applications such as thermoelectrics and quantum

computing.
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Chapter 5

Transient thermal grating

measurement for thin films

5.1 Introduction

Pump-probe spectroscopy is a robust and versatile technique to characterize the ther-

mal transport properties of bulk materials, thin films as well as the interfaces. The

essential idea is to use the pump beam to heat up the sample, which causes temper-

ature changes, and to use the probe beam to detect the surface reflectance change

due to the temperature change (Δ𝑅
𝑅 ∝ ∆𝑇 ). Since the temperature change dynamics

is determined by the thermal transport properties, we can extract the values of the

transport properties via proper fitting based on thermal modeling.

Time-domain thermoreflectance (TDTR), frequency-domain thermore-flectance

(FDTR) and transient thermal grating (TTG) are three prevalent optical canalization

techniques for thermal transport measurements. The TDTR technique uses an ultra-

fast laser pulse as pump and another delayed pulse as probe[138, 139, 140]. The FDTR

technique uses a frequency-modulated continuous-wave (CW) pump and a CW probe

to probe temperature responses in the frequency domain. In these two techniques,

the beam profiles are all Gaussian in the in-plane directions, so is the spatial heating

profile. Moreover, after the pump pulses, electron excitation, electron-phonon cou-

pling and phonon thermal conduction happen in different yet overlapped time ranges
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of the whole equilibrium process, which brings challenges to distinguish the part of

the signal that are actually due to thermal conduction. To ensure the signal is solely

determined by thermal transport, people often coat a metallic transducer layer on top

of the sample when conducting TDTR and FDTR measurements, since the electronic

responses are very fast compared with the lattice responses.

The TTG, on the other hand, uses an entirely different heating geometry[141,

142, 143, 144]. It sends two pulsed pump beams that interfere and form a sinusoidal

heating grating on sample surface, and sends the probe to the same grating with a time

delay (or a CW probe with constant power). The surface temperature perturbation

has a sinusoidal profile with periodic temperature peaks and valleys, which diffracts

the probe beam with spatially-varying diffraction efficiency. As the heat dissipates

horizontally, the temperature difference between the temperature peak and valley

decreases and the decay of temperature difference encodes the thermal transport

properties. Compared with TDTR and FDTR, the simple changes in the heating

geometry in TTG completely change the heat transfer dynamics, making the TTG

are more sensitive to in-plane thermal transport. In addition, the grating period

for the heating profile is tunable via changing the phase mask. That is to say, the

distance between the periodic “heat source” (the temperature peak) and the “heat

sink” (the temperature valley) is tunable. This effectively determines how long it

takes to reach thermal equilibrium. When the grating period length is longer, the

heat dissipation takes longer time. By properly choosing the grating period length, it

is possible to separate the non-thermal responses (electron diffusion, electron-phonon

coupling, and carrier recombination) and thermal responses (phonon transport), thus

it allows measuring the thermal conductivity in certain materials without the need

for the metallic transducer.

For instance, the in-plane thermal conductivity of graphite[145] and Si membrane[144]

have been directly measured with TTG in the transmission geometry without the

metallic transducer layer, where the pump and probe beam transmit through the

whole sample and the heat dissipation can be regarded as an ideal two-dimensional

thermal transport process. However, a lot of thin film samples, whose in-plane ther-
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Figure 5-1: Representative temperature distribution snapshots in TTG experiments
in a semi-infinite bulk sample. The color refers to the temperature change with respect
to the background temperature. The z direction is pointing from the material surface
to the inner region of the material. Initially, the temperature change at the surface
is a sinusoidal function. As time evolves, the contrast of the temperature peaks and
temperature valleys is weakened due to the heat transport both along the in-plane
direction and the cross-plane direction (z direction).

mal conductivity is of interest, have thickness of ∼ 100 nm and are grown on substrate.

In this case, it is impossible to conduct TTG measurements in transmission geometry.

Meanwhile, using TDTR or FDTR with transducer often has a limited sensitivity of

in-plane thermal conductivity. Nevertheless, one can use the TTG with reflection

geometry as illustrated in Fig. 5-1. Yet, there are rarely reports and analysis on using

TTG with reflection geometry to measure thermal conductivity of thin films grown

on substrate[141]. In this Chapter, we present the methodology of utilizing the TTG

to measure thermal conductivity of thin films with single-layer or multiple-layer ge-

ometry. Such method allows the measurement for layered samples with any number

of layers without the transducer, which serves as an alternative for TDTR and FDTR

methods.
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Figure 5-2: The optical configuration for heterodyne detection of transient thermal
grating. Reprinted from Ref. [147].

5.2 Methodology

5.2.1 Phase-controlled, heterodyne TTG

The TTG setup is at NanoEngineering lab at MIT, and it was built by Bai Song and

Ke Chen with the support of Professor Keith Nelson’s group and modified by Jungwoo

Shin and me. We adopt the phase-controlled, heterodyne TTG configuration, where

the signal generally contains the contributions of temperature rises as well as the

surface dis-placements[142, 143]. As shown in Fig. 5-2, in the reflection setup, a

pump beam is first split into two beams by the phase mask. We block high-order

diffraction beams and only keep the two first-order diffracted beams. The two beams

are focused on sample surface after two lenses and form constructive interferences,

serving as the transient grating. Similarly, another two beams split by the phase

mask, called the probe beam and the reference beam, are focused on sample surface.

The probe beam is diffracted by the thermal grating caused by pump and encodes

information of the temperature rise. Usually, the intensity of the diffracted beam is

weak, because the diffraction efficiency is proportional to the square of the material

excitation amplitude 𝐼2 (𝐼 ≪ 1)[146].

To amplify the diffracted probe signal, we use the reference beam reflected by the

thermal grating, which is collinear with the diffracted probe beam, to form coherence
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between the diffracted probe and the reflected reference beam. The resulting output

signal 𝐼𝑆 writes[142],

𝐼𝑆 = 𝐼𝑅 + 𝐼𝐷 + 2
⌈︂
𝐼𝑅𝐼𝐷cos𝜃 (5.1)

where 𝐼𝑅 and 𝐼𝐷 are the reflected reference beam’s intensity and diffracted probe

beam’s intensity, and 𝜃 is the phase difference between their associated electromag-

netic fields. Generally, the reflected reference beam has a much higher intensity than

the diffracted beam, 𝐼𝑅 ≫ 𝐼𝐷. Thus, the second term in Eq. 5.1 is negligible. The

first term is almost a constant. The third term is amplified compared with 𝐼𝐷 by a

factor of
⌉︂

𝐼𝑅
𝐼𝐷

≫ 1. We denote the third term the heterodyne signal 𝐼het. By intro-

ducing a phase shift in the probe beam to tune 𝜃, we can measure two different sets of

output intensities 𝐼𝑆. After subtracting the two intensities, we remove the constant

part and only the third term remains. We effectively obtain the signal that is solely

proportional to 𝐼het ∝
⌋︂
𝐼𝑅𝐼𝐷.

Next, we examine how to extract the temperature responses from the heterodyne

signal. Johnson et. al. show that the heterodyne diffraction signal satisfies[143],

𝐼het ∝ ⋃︀𝑟0⋃︀
2 {𝑟′(𝑡)cos𝜃 − (︀𝑟′′(𝑡) − 2𝑘𝑝𝑢(𝑡)cos𝛽𝑝⌋︀ sin𝜃} (5.2)

where 𝑘𝑝 and 𝛽𝑝 are the wavevector and incident angle for the probe beam, 𝑟(𝑡) =

𝑟0 (︀1 + 𝑟′(𝑡) + 𝑖𝑟′′(𝑡)⌋︀ is the dynamic complex reflection coefficient, 𝑟0 is the intrinsic

reflection coefficient without transient grating and 𝑢(𝑡) is the surface displacement.

When the phase 𝜃 is tuned to be 0 or ±𝜋, the corresponding signal is only related to

𝑟′(𝑡). For a lot of materials, we have 𝑟′(𝑡) ∝ ∆𝑇 (𝑡), where ∆𝑇 (𝑡) is the temperature

difference between the peaks and valleys of the sinusoidal temperature profile and

we call the such grating the amplitude grating. In the actual measurement, we will

measure two heterodyne signals at 𝜃 = 0 and 𝜃 = 𝜋 and subtract the two signals. The

resulting signal satisfies, ∆𝐼het,amplitude ∝ ∆𝑇 (𝑡). If the phase difference 𝜃 is tuned

to be 𝜋⇑2 and −𝜋⇑2, the signal is related to 𝑢(𝑡) and 𝑟′′(𝑡). If we subtract these

two signals, the obtained signal satisfies ∆𝐼het,phase ∝ 𝐴∆𝑇 + 𝑢(𝑡), where 𝐴 is an

unknown constant. In this case, it is not a trivial task to separate the temperature
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responses from the displacement responses. For certain materials (e.g. graphite),

the temperature effect on 𝑟′′(𝑡) is small such that 𝐴 → 0, and the signal is thus

dominated by the surface displacement 𝑢(𝑡). Conventionally, we call the grating with

𝜃 = ±𝜋⇑2 the phase grating. The signal from amplitude grating and phase grating have

distinctive features. The surface displacement is often rapidly oscillating with time,

whereas the signal for amplitude grating is smoothly decaying with time. Since the

amplitude grating is directly related to temperature, in the following, we are focused

on the TTG with amplitude grating.

5.2.2 The heat transfer model for layered medium

We have established the understanding of the necessity of heterodyne detection and

the dependence of heterodyne diffraction signal on the temperature difference ∆𝑇 (𝑡)

between the temperature peaks and the valleys. In this section, we model the surface

temperature ∆𝑇 (𝑡) under the spatially periodic heating. To start with, we need to

consider the optical absorption of the pump beam in the depth direction.

The electrons within the optical absorption depth are instantaneously heating up

and the temperature of the lattice rises later due to electron-phonon interaction. We

express the heat source term as,

𝑃 (𝑡, 𝑥) = 𝑃0(𝑡)𝑒
𝑖𝑞𝑥𝑒−𝜉𝑧 =

1

2𝜋 ∫
𝑃0(𝜔)𝑒

𝑖𝑞𝑥𝑒−𝜉𝑧𝑒𝑖𝜔𝑡d𝜔 (5.3)

where 𝜉 is inverse penetration depth and 𝑃0 ≈
𝐽𝜉

𝐴(1−𝑒−𝜉𝐿)
with 𝐿 the thickness of top

layer, 𝐴 the beam cross-sectional area, 𝑞 = 2𝜋
𝜆 is the wavevector for the grating, 𝜆 is

the grating period length and 𝐽 is the pump laser power in Watt. The heat equation

writes,

∇ ⋅ (𝜅∇𝑇 ) + 𝑃 (𝑡, 𝑥) = 𝜌𝐶
𝜕𝑇

𝜕𝑡
, (5.4)

where 𝑇 is the temperature rise with respect to the background temperature. The

temperature rise will follow the expression, 𝑇 = 𝑇 (𝜔, 𝑞, 𝑧) 𝑒𝑖(𝜔𝑡+𝑞𝑥). Plugging the
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temperature rise expression into Eq. 5.4, we obtain the expression for 𝑇 ,

𝑇 (𝜔) = 𝑇0(𝜔) +
𝑃0(𝜔)

𝜅𝑧(𝛽2 − 𝜉2)
𝑒−𝜉𝑧, (5.5)

and the heat flux in cross-plane direction is,

𝑄̃(𝜔) = 𝑄̃0(𝜔) +
𝜉𝑃0(𝜔)

𝛽2 − 𝜉2
𝑒−𝜉𝑧, (5.6)

Here, 𝑇0(𝜔) = 𝐴𝑒−𝛽𝑧 + 𝐵𝑒𝛽𝑧 is the solution to Eq. 5.4 when there is no volumetric

heating (𝑃 (𝜔) = 0), 𝛽 =
⌈︂
(𝑞2𝜅𝑥 + 𝑖𝜌𝐶𝜔) ⇑𝜅𝑧 and 𝜅𝑥 and 𝜅𝑧 are the in-plane and cross-

plane thermal conductivity. The boundary condition for surface (𝑧 = 0) is adiabatic

as convection and radiation are negligible, thus 𝜅𝑧(𝛽𝐴 − 𝛽𝐵) = − 𝜉𝑃0(𝜔)
𝛽2−𝜉2 . The surface

temperature is 𝑇sf(𝜔) = 𝐴 +𝐵 +
𝑃0(𝜔)

𝜅𝑧(𝛽2−𝜉2) . The bottom temperature and heat flux of

the first layer writes,

𝑇1 = 𝐴𝑒−𝛽𝐿 +𝐵𝑒𝛽𝐿 +
𝑃0(𝜔)

𝜅𝑧 (𝛽2 − 𝜉2)
𝑒−𝜉𝐿 = cosh(𝛽𝐿)𝑇sf(𝜔)

+ ⌊︀
sinh(𝛽𝐿)

𝜅𝑧𝛽
−

cosh(𝛽𝐿)

𝜅𝑧𝜉
+
𝑒−𝜉𝐿

𝜅𝑧𝜉
}︀
𝜉𝑃 (𝜔)

𝛽2 − 𝜉2

(5.7)

𝑄̃1 = 𝜅𝑧𝛽𝐴𝑒
−𝛽𝐿 − 𝜅𝑧𝛽𝐵𝑒𝛽𝐿 +

𝜉𝑃0(𝜔)

𝛽2 − 𝜉2
𝑒−𝜉𝐿

= −𝜅𝑧𝛽sinh(𝛽𝐿)𝑇sf(𝜔)

+ ]︀
𝛽

𝜉
sinh(𝛽𝐿) − cosh(𝛽𝐿) + 𝑒−𝜉𝐿{︀

𝜉𝑃 (𝜔)

𝛽2 − 𝜉2

(5.8)

In matrix form, the above equations can be expressed by,

⎛
⎜
⎝

𝑇1

𝑄̃1

⎞
⎟
⎠
=
⎛
⎜
⎝

cosh(𝛽𝐿) −
sinh(𝛽𝐿)

𝜅𝑧𝛽
+

cosh(𝛽𝐿)
𝜅𝑧𝜉

− 𝑒−𝜉𝐿

𝜅𝑧𝜉

−𝜅𝑧𝛽sinh(𝛽𝐿) −
𝛽
𝜉 sinh(𝛽𝐿) + cosh(𝛽𝐿) − 𝑒−𝜉𝐿

⎞
⎟
⎠

⎛
⎜
⎝

𝑇sf

𝜉𝑃 (𝜔)
𝜉2−𝛽2

⎞
⎟
⎠

(5.9)

For the remaining layers, the expression for the transfer matrix can be found in

Sec. C.1.3 as long as we assume the volumetric heating is only happening within the

top layer. When the top layer is made of metal which usually has a small penetration

depth, this is a good assumption. The temperature and heat flux at the external
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surface of the last layer satisfy,

⎛
⎜
⎝

𝑇𝑛

𝑄̃𝑛

⎞
⎟
⎠
=
⎛
⎜
⎝

𝑎 𝑏

𝑐 𝑑

⎞
⎟
⎠

⎛
⎜
⎝

𝑇sf

𝜉𝑃 (𝜔)
𝜉2−𝛽2

⎞
⎟
⎠

(5.10)

For adiabatic boundary condition at the external surface of the last layer (negligible

convection and radiation), the surface temperature of the top layer can be expressed

by,

𝑇sf = −
𝑑

𝑐

𝜉𝑃 (𝜔)

𝜉2 − 𝛽2
(5.11)

Alternatively, for zero temperature (relative to background temperature) boundary

condition at the bottom layer, the surface temperature rise can be expressed by,

𝑇sf = −
𝑏

𝑎

𝜉𝑃 (𝜔)

𝜉2 − 𝛽2
. (5.12)

𝑇sf(𝜔) is equal to the Fourier transform of temperature difference between tempera-

ture peak and valleys ∆𝑇 (𝜔). The above-mentioned two boundary conditions gener-

ally give the same results for surface temperature.

High-frequency limit At extremely high frequencies, the signal should converge to

the heat conduction in semi-infinite slab. After adopting the adiabatic boundary

condition for the bottom surface, the top surface temperature reads,

𝑇sf(𝜔 →∞) = −⌊︀−
tanh(𝛽𝐿)

𝜅𝑧𝛽
+

1

𝜅𝑧𝜉
−

exp(−𝜉𝐿)

𝜅𝑧𝜉sinh(𝛽𝐿)
}︀
𝜉𝑃 (𝜔)

𝜉2 − 𝛽2

≈
1

𝜅𝑧𝛽2
𝑃 (𝜔) = −

𝑃 (𝜔)

𝜌𝐶𝜔
𝑖.

(5.13)

Thus, the phase will goes to −𝜋
2 . On the other hand, we have assumed that for the

initial heating profile is instantaneous. In fact, it takes time to build such heating

profile and the characteristic time for electron-phonon interaction can be up to 100

ps. In this case, one can assume 𝑃 (𝑡) with a finite width and plug the corresponding

Fourier transform 𝑃 (𝜔) into Eq. 5.11 or Eq. 5.12.
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Semi-infinite limit For single-layer medium, the surface temperature is,

𝑇sf(𝜔) =
−

𝛽
𝜉 sinh(𝛽𝐿) + cosh(𝛽𝐿) − 𝑒−𝜉𝐿

sinh(𝛽𝐿)𝜅𝑧𝛽

𝜉𝑃 (𝜔)

𝜉2 − 𝛽2

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀𝐿→∞

. (5.14)

When 𝜉 is large (close-to-zero penetration depth),

𝑇sf(𝜔) ≈
1

𝜅𝑧𝛽

𝑃 (𝜔)

𝜉
= 𝐶𝑒𝑖𝜃. (5.15)

where 𝜃 = −atan ( 𝜌𝐶𝜔
𝑞2𝜅𝑥

) ⇑2. Essentially, the phase angle 𝜃 changes from 0 to −𝜋⇑4 as 𝜔

changes from 0 to ∞.

5.3 Results and discussions

We conduct the TTG in the reflection geometry for two types of thin film samples and

apply the heat transfer model to extract the thermal conductivity of the thin film.

Specifically, we study the thermal conductivity in correlated oxide thin film V2O3,

which experiences insulator-metal transition at low temperatures and in GaAs/AlAs

digital-alloy superlattices with ErAs quantum dots randomly inserted near interfaces.

5.3.1 Thermal conductivity in correlated oxide thin films

Metal–insulator transition has been observed in correlated oxide thin films such as

VO2 and V2O3. Such transition can be triggered by temperature changes or external

voltage changes in company with structural deformation. The metal-insulator tran-

sition has been used in neuromorphic computing and resistive memories[148, 149].

The V2O3 sample is provided by Dr. Yoav Kalcheim from Professor Ivan K.

Schuller’s research group at University of California San Diego. The thin films are

grown on sapphire substrates with different crystal orientations with thickness of 126

nm, one cut at the r plane and one cut at the a plane, denoted r-cut and a-rut,

respectively. The electrical conductivity has been measured by Dr. Yoav Kalcheim,

as shown in Fig. 5-3. The two samples both experience insulator-metal transition at
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Figure 5-3: The electrical conductance for thin films with different crystal orienta-
tions.

low temperatures. The hysteresis feature suggests that the transition has a memory

of the past physical states, which is the key for neuromorphic computing[150]. The

crystal orientation has a large impact on the transition temperature. The transition

temperature of the r-cut sample is around 150 K while the transition temperature for

the a-cut sample is around 130 K. Such tunability in the transition temperature create

new opportunities in memristive device. Since the electron transport shows strong

dependence on crystal orientation, we are eager to answer the following question:

How does the crystal orientation of thin films impact the thermal transport?

We used pulsed pump with duration time of 180 fs of 515 nm and a continuous-

wave (CW) probe beam of 532 nm. The pump fluence is 1.29 mJ/cm2 (estimated

corresponding temperature rise on the order of ∼ 10 K) and the probe power is

3.6 mW. The inverse penetration depth is computed from the reports on dielectric

constants[151]. The heat capacity of oxide film, the thermal conductivity and heat

capacity of substrate sapphire are all taken from literatures.

In Fig. 5-4, we present the normalized TTG signal with amplitude grating at

room temperature and find a weak grating period length dependence. We do not

find any grating dependence of the thermal conductivity. Moreover, the thermal

conductivity shows a very weak dependence on the crystal orientation, suggesting
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Figure 5-4: TTG signal for V2O3 grown on (a) r-cut sapphire and (b) a-cut sapphire
and (c) the corresponding fitted thermal conductivity.

that the electronic contribution is small, and the phonon heat conduction does not

have strong orientation dependence.

We further vary the temperature and find that near the phase transition tempera-

ture, the signal shows strong non-thermal feature. This is because the thermal grating

causes the phase transition in the hotter regions first. The boundaries between metal

and insulator phases propagate horizontally, which is a much slower process compared

with heat conduction. The phase transition changed the band structures as well as

the optical reflectivity, thus contributing to the time-dependent signals. However, it

is not a trivial task to extract the thermal conductivity, as the heat from the pump

are dissipated via two types of processes, the latent heat for phase transition and

the lateral heat conduction. Outside the phase transition window, the non-thermal

feature in TTG signal disappears.

In Fig. 5-6, we show the thermal conductivity as a function of temperature for the

two samples. We drop those TTG datasets that show strong non-thermal features due

to insulator-metal transition. The thermal conductivity of two samples are similar,

thus we conclude that the thermal conductivity in V2O3 does not have a noticeable

orientation dependence above the phase transition temperature.
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Figure 5-5: TTG signal for V2O3 grown on (a) r-cut and (b) a-cut sapphires at various
temperatures. The grating period is 2 𝜇m.

Figure 5-6: Thermal conductivity of V2O3 grown on (a) r-cut sapphire and (b) a-cut
sapphire at various temperatures.
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5.3.2 Thermal conductivity in digital-alloy superlattices

The GaAs/AlAs superlattice has been used in vertical cavity laser and digital-alloy has

been often used to tune the electrical resistance of the superlattice. ErAs nanodots can

be added at interfaces in superlattice to reduce the thermal conductivity and make

GaAs/AlAs superlattice a potential candidate for high-performance thermoelectric

materials. We are interested in finding out how the alloying and random dots affect

the thermal conduction. The GaAs/AlAs digital-alloy superlattices are provided by

Kedong Zhang and Professor Hong Lu. The period for the Ga0.9Al0.1As⇑Ga0.1Al0.9As

superlattice is 3×[GaAs (0.9 nm) AlAs (0.1 nm)] 3×[GaAs (0.1 nm) AlAs(0.9 nm)]

and each layer in such structure is known as digital alloy. The digital alloy can

strongly scatter high-frequency phonons via alloy scattering. ErAs random dots are

introduced to further scatter middle to low frequency phonons. In this case, we want

to understand how these strategies impact the thermal conductivity.

We find that directly measuring the superlattice sample without coating a metal

transducer is difficult because the GaAs/AlAs superlattice without dots shows strong

electronic (non-thermal) responses that cannot be explained by thermal modeling.

Thus, we coat a layer of Au with thickness of 95 nm. The interface conductance

between the superlattice and the GaAs substrates is taken to be 𝐺2 = 109 W⇑m2-K.

The penetration depth for gold transducer layer is taken as 10 nm. The thickness

for undoped superlattice and superlattices doped with 4 ml (monolayers) and 8 ml of

ErAs are 1120 nm, 1144 nm and 1176 nm, respectively.

In the transient thermal grating measurements, we use grating period of 5.59 𝜇m

and 9.9 𝜇m and plot the average of the fitted thermal conductivity. We find that

the sensitivity to the interface conductance between the metal transducer and the

superlattice film is low, thus we use the FDTR, which has a higher sensitivity for

interface conductance in this case, to measure the interface conductance first (shown

in Fig. 5-7) and then we plug the conductance in the TTG model to fit for the thermal

conductivity.

In Fig. 5-8, we find the fitted thermal conductivity from TTG signal agrees nicely
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Figure 5-7: Interfacial thermal conductance from FDTR.

with the FDTR results. In addition, the thermal conductivity of GaAs/AlAs super-

lattice with 10 % quantum dots added is much lower than the superlattice without

dots. Meanwhile, adding even more quantum dots does not significantly reduce the

thermal conductivity, indicating that the dots cannot induce more phonon scatterings

above certain defect concentration.

5.4 Conclusion

In this Chapter, we have presented a way to measure the transport properties of

thin-film samples grown on substrates with TTG in the reflection geometry. This

method can be used to measure the heat capacity, thermal conductivity and interface

resistances in layered medium. We conduct measurements on correlated V2O3 thin

films and find that orientation has a weak effect on thermal conductivity and the heat

conduction is dominated by phonons. We also measure the GaAs/AlAs digital-alloy

superlattice with random quantum dots at interfaces and find that the dots induce

very strong phonon scattering and drastically reduce the thermal conductivity, yet

when the dot concentration is very high, such reduction in thermal conductivity
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Figure 5-8: Thermal conductivity of GaAs/AlAs digital-alloy superlattices with dif-
ferent ErAs fractions.

saturates.
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Chapter 6

Summary and outlook

6.1 Summary

Understanding the phonon and electron transport across interfaces and through disor-

dered structures is crucial to the design of next-generation electronics. The analysis

of the interface scattering for electron and phonon from the wave perspective pro-

vides new strategies of using interface disorders to enhance the interfacial transport.

Furthermore, we experimentally demonstrate that the phonon Anderson localization

exists in aperiodic layered medium, which suggests that the phonon wave interferences

in disordered structures can be harnessed to control the phonon flow. This thesis pro-

vides several new practical strategies to engineer electron and phonon transport using

disorders.

In Chapter 2, we present the mode-resolved Green’s function formalism to study

the electron transmission across interfaces. We find two important factors that con-

tribute to the transmission: the symmetry and the interface roughness. We find that

the energy and momentum conservation are not the sufficient condition for electron

transmission; the symmetries of the Bloch wavefunctions have to be compatible. The

interface roughness can scatter electrons with small wavelengths and create more

preferable transmission channels than unwanted reflection channels, resulting in a

drastic reduction in contact resistance.

In Chapter 3, we apply the electron Green’s function formalism to study phonon
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transport across rough interfaces, which has been conventionally studied using the

diffuse mismatch model. The diffuse mismatch model assumes that phonon loses its

memory of origin after diffuse phonon scattering by interfaces. We clarify that such

assumption is invalid. Instead, the phonon partially remains its memory of origin.

In Chapter 4, we study the phonon Anderson localization in aperiodic system and

answer three important questions. First, we show how the localization length de-

pends on disorders and material properties. Second, we use theoretical calculation to

design aperiodic superlattice structures that supports Anderson localization. Third,

we experimentally verify our predictions using optical measurements and find that

the phonon Anderson localization exists in aperiodic superlattices up to 200 K.

In Chapter 5, we present a new method based on transient thermal grating to

study the in-plane transport of nanoscale thin films grown on substrate without the

need to coat the metal transducer layer.

6.2 Outlook

In this section, we first give high-level outlooks on important questions that are yet

to solve and then provide several detailed viable research directions. Firstly, the in-

terfacial transport for electron and phonon in this thesis assumes elastic scattering.

It remains unclear how inelastic effect changes the interface scattering. For exam-

ple, for electron transport across interfaces, the electron-phonon scattering can cause

Joule heating, which is harmful to transport. However, the electron-phonon scatter-

ing can also assist the tunneling. Therefore, it needs further study on the inelastic

processes on interfacial transport. Secondly, the interplay between Anderson local-

ization and anharmonicity can play an important role in disordered structures. The

physical picture of how anharmonicity destroys phonon interferences is entirely un-

known. What’s more, experimentally demonstrating phonon Anderson localization

in two-dimensional[152] is worth pursuing.

Specifically, for electron transport across interfaces, the impact of band bending

needs to be considered by solving the Poisson’s equation. In addition, the electron-
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phonon interaction can be added via adding the electron-phonon self-energies. The

heating and cooling due to energy exchange between electron and lattice (electron-

phonon interaction) is relevant to find where the Joule heating and Peltier cooling

are happening[153], which helps to optimize the heat generation in electronics.

For phonon transport across rough interfaces, we have presented a continuum

model that includes the specular scattering and diffuse scattering while prior modeling

has to describe specular scattering and diffuse scattering using different models and

combine them with a phenomenological weighting parameter. However, our model is

scalar, and it would be useful to derive the vector model that considers the polarization

of acoustic phonons[31].

For phonon Anderson localization, we want to point out that there is no general

way to compute the phonon localization length. People often uses participation ratio

to describe localization, but it has no spatial information. In Chapter 4, we analyze

the transmission amplitude decaying along one direction, yet for three-dimensional

transport, such one-dimensional analysis is not enough. We think that it is possible

to extract the localization length by solving the similar Bloch eigenvalue problem

in Chapter 3. In the system where phonon localization emerges, the wavevector q

is complex and the 1⇑⋃︀Im{q}⋃︀ is the localization length. We can further conduct an

ensemble average and identify the intrinsic localized state (gapped state), weakly

localized states and strongly localized states due to disorders. Such methodology is

applicable to systems in any dimensions.
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Appendix A

Green’s function for electron

transmission

A.1 Mode-resolved Green’s function formalism for

electron transport

The mode-resolved Green’s function formalism to compute the transmission and re-

flection probability matrix is developed by Khomyakov et al..We present a brief in-

troduction to the formalism as follows for completness. We first construct the Hamil-

tonian for the structure shown in Fig. 2-1 (a). For a given ksc,∥, the Hamiltonian

writes,

𝐻(ksc,∥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱

𝐻𝐿
11 𝐻𝐿

01

𝐻𝐿
10 𝐻𝐿

00 𝐻𝐿𝐷

𝐻𝐷𝐿 𝐻𝐷 𝐻𝐷𝑅

𝐻𝑅𝐷 𝐻𝑅
00 𝐻𝑅

01

𝐻𝑅
10 𝐻𝑅

11

⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.1)

with the matrix blocks corresponding to different cells of the supercell along the inter-

face normal as well as the interactions between neighboring cells. In the semi-infinite
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lead region, we have 𝐻𝐿
𝑛𝑛 = 𝐻𝐿

00 and 𝐻𝑅
𝑛𝑛 = 𝐻𝑅

00, where 𝑛 denote the 𝑛th repeated

supercell cell in the lead region as denoted in Fig. 1 (a). 𝐻𝐷 is the Hamiltonian cor-

responding to the device region. 𝐻𝐿𝐷⇑𝐷𝐿 and 𝐻𝑅𝐷⇑𝐷𝑅 describe interactions between

the lead and the device region.

The Green’s function matrix is defined by,

((𝐸 ± 𝑖𝜂)𝐼 −𝐻(ksc,∥))𝐺
𝑟⇑𝑎(𝐸,ksc,∥) = 𝐼 (A.2)

where 𝐼 is the identity matrix, 𝜂 is an infinitesimal positive real number and the

superscripts 𝑟 and 𝑎 denote retarded and advanced Green’s function, depending on

the sign in front of 𝑖𝜂. The retarded Green’s function at given energy 𝐸 in the block

matrix form is explicitly expressed by,

𝐺𝑟(𝐸,ksc,∥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱

𝐺𝐿
11 𝐺𝐿

01 ⋰

𝐺𝐿
10 𝐺𝐿

00 𝐺𝐿𝐷 𝐺0,𝑁+1

𝐺𝐷𝐿 𝐺𝐷 𝐺𝐷𝑅

𝐺𝑁+1,0 𝐺𝑅𝐷 𝐺𝑅
00 𝐺𝑅

01

⋰ 𝐺𝑅
10 𝐺𝑅

11

⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.3)

In particular, the matrix block 𝐺𝐿
00 and 𝐺𝑅

00 are useful physical quantities to com-

pute the transmission matrix, called the surface Green’s function for the left and right

lead which satisfies,

𝑔𝑟𝐿⇑𝑅(𝐸,ksc,∥) = 𝐺
𝐿⇑𝑅
00 = (︀(𝐸 + 𝑖𝜂)𝐼 −𝐻

𝐿⇑𝑅
00 −Σ𝑟

𝐿⇑𝑅⌋︀
−1 (A.4)

where the self-energy of left and right lead are Σ𝑟
𝐿 = 𝐻𝐿

10𝑔
𝑟
𝐿𝐻

𝐿
01 and Σ𝑟

𝑅 = 𝐻𝑅
01𝑔

𝑟
𝑅𝐻

𝑅
10.

In this work, the surface Green’s functions are iteratively solved using the decimation

technique[115].

The matrix block 𝐺𝑁+1,0 describes the response at 𝑁 + 1 th cell (0 th cell in the
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right lead) cell given the perturbation at 0 th cell in the left lead. We use Dyson’s

equation to compute the matrix 𝐺𝑁+1,0. To obtain 𝐺𝑁+1,0, we need to evaluate the

matrix block 𝐺𝐷 for the device region, which contains a large amount of atoms for the

case of rough interfaces. The efficient computation for device Green’s function 𝐺𝐷 is

thus challenging. To overcome this difficulty, the device Green’s function is calculated

using the recursive technique[116, 117] and the detail for our implementation of the

recursive Green’s function can be found in our prior work[76].

To compute the transmission mentioned in Eq. 2.4, we need to compute the eigen-

vector matrices and velocity matrices. We outline how to compute these matrices in

the following. For a given transverse momentum ksc,∥ and energy 𝐸, there are multi-

ple subbands in the lead region with different perpendicular momenta 𝑘𝑧’s. What’s

more, the lead is semi-infinite, which supports both propagating (real 𝑘𝑧) and evanes-

cent (imaginary 𝑘𝑧) states. We need to resolve the perpendicular momentum 𝑘𝑧 and

its corresponding velocity 𝑣𝑧 to compute the ratio of scattered current to the incident

current to obtain the transmission and reflection probability matrix.

We first introduce an auxiliary matrix for the right lead,

𝐹 𝑟
𝑅 = 𝑔𝑟𝑅𝐻

𝑅
10 (A.5)

and compute its eigenvalue Λ𝑟
𝑅 and eigenvector 𝑈 𝑟

𝑅 via,

𝐹 𝑟
𝑅𝑈

𝑟
𝑅 = Λ𝑟

𝑅𝑈
𝑟
𝑅 (A.6)

It has been pointed by Khomyakov et al.[75] that the eigenvalue Λ𝑟
𝑅,𝑖 stores the

phase information of the electron and the eigenvector matrix 𝑈 𝑟
𝑅,𝑖 contains the Bloch

wavefunctions for state 𝑖. If ⋃︀Λ𝑟
𝑅,𝑖⋃︀ ≠ 1, it corresponds to an evanescent state. If

⋃︀Λ𝑟
𝑅,𝑖⋃︀ = 1, it corresponds to a propagating state. We can extract the perpendicular

momentum by 𝑘𝑅,𝑖 =
1
𝑎𝑅

logΛ𝑟
𝑅,𝑖. Similarly, for the left lead, we define the auxiliary
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matrix, its eigenvalues and eigenvectors,

𝐹 𝑎
𝐿 = 𝑔𝑎𝐿𝐻

𝐿
01

𝐹 𝑎
𝐿𝑈

𝑎
𝐿 = Λ𝑎

𝐿𝑈
𝑎
𝐿

(A.7)

where 𝑔𝑎𝐿 = (𝑔𝑟𝐿)
† is the advanced surface Green’s function for the left lead.

The velocity along the transport direction (perpendicular to interface) 𝑣𝑧 can be

described by the velocity matrix,

𝑉 𝑎
𝐿 = −𝑈𝑎†

𝐿 Γ𝑎
𝐿𝑈

𝑎
𝐿,

𝑉 𝑟
𝑅 = 𝑈 𝑟†

𝑅 Γ𝑟
𝑅𝑈

𝑟
𝑅.

(A.8)

where Γ = 𝑖(Σ−Σ†). The diagonal elements of these matrices correspond to the group

velocities along z direction of different states.

The reflection probability matrix from 𝛼 side 𝑅𝛼𝛼,𝑗𝑖(𝐸,ksc,∥) is similarly defined

by,

𝑅𝛼𝛼,𝑗𝑖(𝐸,ksc,∥) = ⋃︀𝑟𝛼𝛼,𝑗𝑖(𝐸,ksc,∥)⋃︀
2 (A.9)

Specifically, the reflection matrices from the left and right side are,

𝑟𝐿𝐿(𝐸,ksc,∥) = 𝑖
⌈︂
𝑉 𝑟
𝐿 (︀𝑈

𝑟
𝐿⌋︀

−1 (𝐺0,0 −𝑄−1
𝐿 ) (︀𝑈𝑎†

𝐿 ⌋︀−1
⌈︂
𝑉 𝑎
𝐿

𝑟𝑅𝑅(𝐸,ksc,∥) = 𝑖
⌈︂
𝑉 𝑟
𝑅(︀𝑈

𝑟
𝑅⌋︀

−1 (𝐺𝑁+1,𝑁+1 −𝑄−1
𝑅 ) (︀𝑈𝑎†

𝑅 ⌋︀−1
⌈︂
𝑉 𝑎
𝑅

(A.10)

where 𝑄−1
𝐿 = (𝐸 + 𝑖𝜂)𝐼 − 𝐻𝐿

00 − 𝐻𝐿
10𝑔

𝑟
𝐿𝐻

𝐿
01 − 𝐻𝐿

01𝑔
𝑟
𝐿′𝐻

𝐿
10 and 𝑄−1

𝑅 = (𝐸 + 𝑖𝜂)𝐼 − 𝐻𝑅
00 −

𝐻𝑅
01𝑔

𝑟
𝑅𝐻

𝐿
10 −𝐻

𝑅
10𝑔

𝑟
𝑅′𝐻𝑅

01 are the retarded Green’s functions for bulk materials. 𝑔𝑟𝛼′ , 𝛼 =

𝐿,𝑅 are the retarded surface Green’s function similar to Eq. A.4, except that they de-

scribe the semi-infinite lead of the same material extending to infinity in the opposite

direction, and they are given by,

𝑔𝑟𝐿′(𝐸,ksc,∥) = )︀(𝐸 + 𝑖𝜂)𝐼 −𝐻𝐿
00 −Σ𝑟

𝐿′⌈︀
−1

𝑔𝑟𝑅′(𝐸,ksc,∥) = )︀(𝐸 + 𝑖𝜂)𝐼 −𝐻𝑅
00 −Σ𝑟

𝑅′⌈︀
−1

(A.11)
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where the self-energies write,

Σ𝑟
𝐿′ =𝐻𝐿

01𝑔
𝑟
𝐿′𝐻

𝐿
10

Σ𝑟
𝑅′ =𝐻𝑅

10𝑔
𝑟
𝑅′𝐻𝑅

01

(A.12)

The reflection matrix also depends on another two surface Green’s function 𝑔𝑟𝐿 and

𝑔𝑎𝑅, as defined by Eq. A.4. The auxiliary matrices, eigenvalue matrices and eigenvector

matrices for these two surface Green’s functions are,

𝐹 𝑟
𝐿 = 𝑔𝑟𝐿𝐻

𝐿
01

𝐹 𝑟
𝐿𝑈

𝑟
𝐿 = Λ𝑟

𝐿𝑈
𝑟
𝐿

(A.13)

𝐹 𝑎
𝑅 = 𝑔𝑎𝑅𝐻

𝑅
10

𝐹 𝑎
𝑅𝑈

𝑎
𝑅 = Λ𝑎

𝑅𝑈
𝑎
𝑅

(A.14)

The self-energies for these two surface Green’s functions are,

Σ𝑎
𝑅 =𝐻𝑅

01𝑔
𝑟
𝑅𝐻

𝑅
10

Σ𝑟
𝐿 =𝐻𝐿

10𝑔
𝑎
𝐿𝐻

𝐿
01

(A.15)

The corresponding broadening matrices are computed by Γ = 𝑖(Σ−Σ†). The velocity

matrices 𝑉 𝑎
𝑅 and 𝑉 𝑟

𝐿 introduced in Eq. A.10 are expressed by,

𝑉 𝑎
𝑅 = −𝑈𝑎†

𝑅 Γ𝑎
𝑅𝑈

𝑎
𝑅,

𝑉 𝑟
𝐿 = 𝑈 𝑟†

𝐿 Γ𝑟
𝐿𝑈

𝑟
𝐿.

(A.16)

A.2 Interface atomic mixing

In Fig. A-1, we present the ensemble-averaged atomic number density along z direc-

tion for different ml and transverse supercell sizes. In Fig. A-2, we demonstrate the

corresponding electron transmission for different interface configurations. At fixed ml

number, smaller transverse supercell sizes give rise to higher nonspecular transmission

function. At fixed transverse supercell size, the higher ml numbers give rise to higher
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nonspecular transmission function.
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Figure A-1: The atomic number density (the number of atoms of a given type per
unit volume) of Si at different atom layers of the interface.
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Figure A-2: The sensitivity of electron transmission on the degree of transverse and
longitudinal disorders. We use 20×20, 15×15, 10×10 ksc,∥-point mesh for 2×2, 3×3,
4×4 transverse supercells.
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Appendix B

The continuum modeling of diffuse

phonon scattering

B.1 Formalism

B.1.1 The transmission and reflection matrix

We consider interfacial transport in the case of scalar phonon model in the continuum

limit, where the equation of motion (EOM) for displacements writes[154],

𝜌(r)
𝜕2𝑢

𝜕𝑡2
−∇ ⋅ (𝜇(𝑧)∇𝑢) = 0 (B.1)

where 𝜇(𝑧) is the bulk modulus. For an interface between two dissimilar solids, we

have 𝜇(𝑧) = 𝜇𝐿 for 𝑧 < 0 and 𝜇(𝑧) = 𝜇𝑅 for 𝑧 ≥ 0. 𝜌(r) = 𝜌0(𝑧) + ∆𝜌(r) is the

density, where 𝜌0(𝑧) is the density without mass disorder at the interface, expressed

by 𝜌0(𝑧 < 0) = 𝜌𝐿 and 𝜌0(𝑧 > 0) = 𝜌𝑅. ∆𝜌(r) = ∑𝑖 ∆𝑚𝑖𝛿(r∥ − r𝑖,∥)𝛿(𝑧) is the density

fluctuations due to atomic mixing at the interface, where ∆𝑚𝑖 is the change of mass

at atom site 𝑖 and r𝑖,∥ is the in-plane position of atom site 𝑖. The choice of the delta

function form for density fluctuations suggests that the atomic mixing only exists

exactly at the interface, thus our model does not apply to the cases where the atomic

mixing exists even far away from the interface. When atomic mixing is realized by
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randomly swapping pairs of atoms on two sides of the interface, the average of mass

fluctuations is zero ∑𝑖 ∆𝑚𝑖 = 0. The mass disorders are distributed randomly in the x-

y plane. The ensemble average of any physical quantity 𝑃 over many configurations of

mass disorders is obtained by integrating over all possible positions of mass disorders,

∐︀𝑃 ̃︀ = ∫ ∏
𝑗

𝑑2r∥,𝑗

𝐴
𝑃 (B.2)

where 𝐴 is the cross-section area. After ensemble average, the average of mass fluc-

tuations is still zero ∐︀∑𝑖 ∆𝑚𝑖 = 0̃︀. We further assume an independent distribution of

mass fluctuations such that,

∐︀∑
𝑖,𝑗

∆𝑚𝑖∆𝑚𝑗̃︀ = ∑
𝑖

∐︀(∆𝑚𝑖)
2
̃︀ (B.3)

The time-harmonic solution of Eq. B.1 reads,

𝑢 = ∑
q∥

𝑢q∥(𝑧)
𝑒𝑖(−𝜔𝑡+q∥⋅r∥)

⌋︂
𝐴

(B.4)

where q∥ = (𝑞𝑥, 𝑞𝑦) is the transverse wavevector, 𝜔 is the phonon frequency, r∥ = (𝑥, 𝑦)

is the transverse position and 𝑢q∥(𝑧) is the z-dependent component of the solution.

The perpendicular wavevectors 𝑞⊥(𝑧) = 𝑞𝑧,𝐿, when 𝑧 < 0, and 𝑞⊥(𝑧) = 𝑞𝑧,𝑅, when

𝑧 ≥ 0, are determined by the dispersion relation 𝜔2 = 𝑐2
𝐿⇑𝑅

(𝑞2
∥
+ 𝑞2

⊥,𝐿⇑𝑅
). Here, 𝑐𝐿⇑𝑅

is the sound velocity defined by 𝑐𝐿⇑𝑅 =
⌈︂
𝜇𝐿⇑𝑅⇑𝜌𝐿⇑𝑅. Plugging in the time-harmonic

solution to EOM, we have the following equation for 𝑢q∥(𝑧),

∑
q∥

)︀(𝜌0(𝑧) +∆𝜌(r))𝜔2 +∇ ⋅ 𝜇(𝑧)∇⌈︀𝑢q∥(𝑧)
𝑒𝑖q∥⋅r∥
⌋︂
𝐴

= 0 (B.5)

Multiply both sides of Eq. B.5 by ∫ 𝑑2r∥𝑒
−𝑖q′

∥
⋅r∥⇑

⌋︂
𝐴. The orthogonality relations for

plane waves leads to,

]︀𝜇(𝑧)𝑞2
⊥
(𝑧) +

𝜕

𝜕𝑧
𝜇(𝑧)

𝜕

𝜕𝑧
{︀𝑢q′

∥

= ∑
q∥

𝑀q′
∥
,q∥𝛿(𝑧)𝑢q∥ (B.6)
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The scattering matrix 𝑀q′
∥
,q∥ is defined by,

𝑀q′
∥
,q∥ = −∑

𝑖

∆𝑚𝑖𝜔
2𝐴−1𝑒𝑖(q∥−q

′

∥
)⋅r∥,𝑖 . (B.7)

The solution to Eq. B.6 is expressed by,

𝑢q∥(𝑧) = 𝛿q∥,q′∥𝑒
𝑖𝑞𝐿𝑧 + 𝑟q∥,q′∥

⌈︂
𝑣′𝐿

⌋︂
𝑣𝐿

𝑒−𝑖𝑞𝐿𝑧, 𝑧 ≤ 0

𝑢q∥(𝑧) = 𝑡q∥,q′∥

⌈︂
𝜌𝐿𝑣′𝐿

⌋︂
𝜌𝑅𝑣𝑅

𝑒𝑖𝑞𝑅𝑧, 𝑧 ≥ 0

(B.8)

where 𝑞𝐿⇑𝑅 = 𝑞𝑧,𝐿⇑𝑅 is the phonon wavevector normal to the interface. 𝑡q∥,q′∥ is the

transmission matrix and 𝑟q∥,q′∥ is the reflection matrix. 𝑣𝐿⇑𝑅 = 𝑐𝐿⇑𝑅 cos 𝜃𝐿⇑𝑅 is the

group velocity perpendicular to the interface, where 𝜃𝐿⇑𝑅 is the angle between the

direction of phonon velocity and the axis normal to the interface.

The transmission and reflection probability matrix are defined by the ratio of the

transmitted flux normal to the interface of phonon q∥ and the reflected flux normal to

the interface of phonon q∥ to the incident flux normal to the interface of phonon state

q′
∥
, 𝑇q∥,q

′

∥

=
𝐽t,q

∥

𝐽inc,q′
∥

and 𝑅q∥,q
′

∥

=
𝐽r,q

∥

𝐽inc,q′
∥

, respectively, where the time-averaged energy

flux for a phonon mode reads[155],

𝐽 =
𝜇(𝑧)

−𝑖𝜔𝐴 ∫
(𝑢∗

𝜕𝑢

𝜕𝑧
− 𝑢

𝜕𝑢∗

𝜕𝑧
)𝑑2r∥ (B.9)

The resultant expressions for transmission probability matrix and reflection proba-

bility matrix are,

𝑇q∥,q
′

∥

= ⨄︀𝑡q∥,q′∥ ⨄︀
2

(B.10a)

𝑅q∥,q
′

∥

= ⨄︀𝑟q∥,q′∥ ⨄︀
2

(B.10b)

The boundary conditions for displacement 𝑢q∥(𝑧) for solving the transmission and

reflection matrix write,

𝑢q∥(0
−) = 𝑢q∥(0

+) (B.11a)
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𝜇(𝑧)
𝜕

𝜕𝑧
𝑢q∥(𝑧)⨄︀

0+

0−
= ∑

q′′
∥

𝑀q∥,q
′′

∥

𝑢q′′
∥

(0), (B.11b)

where the second boundary condition is obtained by integrating Eq. B.6 from −𝜂 to

𝜂, with 𝜂 → 0+. Plug in the expression in Eq. B.8 into the boundary condition. We

obtain the following expressions,

𝛿q∥,q′∥ + 𝑟q∥,q′∥ = 𝑡q∥,q′∥ (B.12a)

∑
q′′
∥

(𝛿q∥,q′′∥ + 𝑖Γq∥,q
′′

∥

)𝑡q′′
∥
,q′
∥

= Λq∥,q
′

∥

(B.12b)

where

Γq∥,q
′′

∥

=
𝑀q∥,q

′′

∥

2𝜔𝜌𝑣

}︂
𝑣𝑅
𝑣′′𝑅

(B.13a)

Λq∥,q
′

∥

= 𝛿q∥,q′∥

⌋︂
𝑣𝐿𝑣𝑅

𝑣
(B.13b)

𝑣 =
𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅

2𝜌
(B.13c)

𝜌 =
⌋︂
𝜌𝐿𝜌𝑅 (B.13d)

In particular, we can reorganize Eq. B.12b and identify that the transmission matrix

can be expanded in series as,

𝑡 =
∞

∑
𝑁=0

(−𝑖Γ)𝑁Λ. (B.14)

which is a summation of terms arising from multiple scatterings of different orders.

We can discard high-order terms to obtain the approximate expression for the trans-

mission matrix.

B.1.2 The Green’s function in the continuum limit

The transmission matrix can be computed from the Green’s function of the whole

system. We choose to compute the Green’s function because of the mathematical

convenience in perturbation expansions using Dyson’s equation. In the following, we

will illustrate the exact relationship between the transmission matrix and the Green’s

function.

122



To start with, we evaluate the unperturbed Green’s function for a disorder-free

interface. The unperturbed EOM writes,

]︀𝜌0(𝑧)𝜔
2 +

𝜕

𝜕𝑧
𝜇(𝑧)

𝜕

𝜕𝑧
{︀𝑢(𝑧) = 0 (B.15)

which can be identified as a Sturm-Liouville equation. Two sets of solutions are given

by,

𝑢<(𝑧) =

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑡𝐿𝑒−𝑖𝑞𝐿𝑧, 𝑧 < 0

𝑒−𝑖𝑞𝑅𝑧 + 𝑟𝐿𝑒𝑖𝑞𝑅𝑧, 𝑧 > 0

(B.16)

and

𝑢>(𝑧) =

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑡𝑅𝑒𝑖𝑞𝑅𝑧, 𝑧 > 0

𝑒𝑖𝑞𝐿𝑧 + 𝑟𝑅𝑒−𝑖𝑞𝐿𝑧, 𝑧 < 0

(B.17)

The continuity condition at interface gives,

𝑡𝐿 = 1 + 𝑟𝐿 =
2𝜇𝑅𝑞𝑅

𝜇𝐿𝑞𝐿 + 𝜇𝑅𝑞𝑅
(B.18)

and

𝑡𝑅 = 1 + 𝑟𝑅 =
2𝜇𝐿𝑞𝐿

𝜇𝐿𝑞𝐿 + 𝜇𝑅𝑞𝑅
(B.19)

For a Sturm-Liouville equation, the Wronskian writes[156],

𝑊 = 𝑢<(𝑧)
𝑑𝑢>(𝑧)

𝑧
− 𝑢>(𝑧)

𝑑𝑢<(𝑧)

𝑧

=

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

4𝑖𝜇𝐿𝑞𝐿𝑞𝑅
𝜇𝐿𝑞𝐿+𝜇𝑅𝑞𝑅

, 𝑧 > 0

4𝑖𝜇𝑅𝑞𝐿𝑞𝑅
𝜇𝐿𝑞𝐿+𝜇𝑅𝑞𝑅

, 𝑧 < 0

(B.20)
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and the Green’s function is defined by,

𝐺0(𝑧, 𝑧
′) =

)︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀]︀

𝑢<(𝑧)𝑢>(𝑧′)
𝜇(𝑧′)𝑊 (𝑧′) , −∞ < 𝑧 < 𝑧′

𝑢<(𝑧′)𝑢>(𝑧)
𝜇(𝑧′)𝑊 (𝑧′) , 𝑧′ < 𝑧 < ∞

=

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

− 𝑖
2𝜇𝐿

𝑡𝑅
𝑞𝐿
𝑒−𝑖𝑞𝐿𝑧𝑒𝑖𝑞𝑅𝑧′ , 𝑧 < 0, 𝑧′ > 0

− 𝑖
2𝜇𝑅

𝑡𝐿
𝑞𝑅
𝑒−𝑖𝑞𝐿𝑧

′

𝑒𝑖𝑞𝑅𝑧, 𝑧 > 0, 𝑧′ < 0

− 𝑖
2𝜇𝐿

𝑒−𝑖𝑞𝐿 ⋃︀𝑧
′
−𝑧⋃︀
+𝑟𝑅𝑒−𝑖𝑞𝐿(𝑧+𝑧

′
)

𝑞𝐿
, 𝑧 < 0, 𝑧′ < 0

− 𝑖
2𝜇𝑅

𝑒𝑖𝑞𝑅 ⋃︀𝑧
′
−𝑧⋃︀
+𝑟𝐿𝑒

𝑖𝑞𝑅(𝑧+𝑧
′
)

𝑞𝑅
, 𝑧 > 0, 𝑧′ > 0

(B.21)

When 𝑧 and 𝑧′ both approaches zero, the unperturbed Green’s function at interface

is

𝐺+

0 = −
𝑖

𝜇𝐿𝑞𝐿 + 𝜇𝑅𝑞𝑅
= −

𝑖

2𝜔𝜌𝑣
(B.22)

where the superscript + is added to represents the retarded Green’s function.

Then, we study the Green’s function for the scenario where atomic mixing is

present at the interface. It is convenient to define the Green’s function operator,

𝐺̂± = )︀𝜌(r)𝜔2 − 𝐾̂ ± 𝑖𝜂⌈︀
−1

(B.23)

where the operator 𝐾̂ = −∇⋅𝜇(𝑧)∇ and 𝜂 is an infinitesimal positive real number. The

Green’s function in the real space representation can then be expressed by 𝐺±(r, r′) =

∐︀r⋃︀ 𝐺̂± ⋃︀r′̃︀. The Green’s function that describes the scattering channel between mode

𝑎 of left side and mode 𝑏 of right side is,

𝐺±

𝑏,𝑎(𝑧, 𝑧
′) =𝐴−1

∬ 𝑑r∥𝑑r
′

∥
𝑒−𝑖(q∥⋅r∥−q

′

∥
⋅r′
∥
)

× ∐︁𝑢q∥ ⋂︀ 𝐺̂
± ⋀︀𝑢′q′

∥

[︁

(B.24)

where the transverse wavevector for mode 𝑎 and mode 𝑏 are q′
∥

and q∥, respectively.

When disorders are introduced, the perturbed eigenvector is related to the unper-

124



turbed eigenvector via[157],

𝑢 = 𝑢′ + ∫ 𝐺+(r, r′)𝑉 (r′)𝑢′(r′)𝑑r′, (B.25)

where 𝑢′ is the eigenstate for the disorder-free case and the perturbation 𝑉 (r) =

−∆𝜌(r)𝜔2. Specifically, the second term on the right-hand side of Eq. B.25 equals,

∫ 𝑑r′𝐺+(r, r′)𝑉 (r′)𝑢′(r′)

=∫ 𝑑r′{𝐺+(r, r′)𝐾̂ ′ − 𝛿(r − r′) − )︀𝐾̂ ′𝐺+(r, r′)⌈︀(︀𝑢′(r′)
(B.26)

Thus, Eq. B.25 is equivalent to,

𝑢 = ∫ 𝜇(r′) (𝑢′
𝜕𝐺+

𝜕𝑧′
−𝐺+

𝜕𝑢′

𝜕𝑧′
) ê𝑧 ⋅ 𝑑S

′ (B.27)

It is easy to show that,

∐︀𝑢′⋃︀𝑉 ⋃︀𝑢̃︀𝑏,𝑎 = ∐︁𝐾̂𝑢′⋂︀𝑢̃︁
𝑏,𝑎
− ∐︀𝑢′⋃︀ 𝐾̂ ⋃︀𝑢̃︀𝑏,𝑎

= ∫ )︀𝑢𝑎𝐾̂𝑢′∗𝑏 − 𝑢′∗𝑏 𝐾̂𝑢𝑎⌈︀𝑑
3r

= ∫ 𝜇(r) ]︀𝑢′∗𝑏
𝜕𝑢𝑎

𝜕𝑧
−
𝜕𝑢′∗𝑏
𝜕𝑧

𝑢𝑎{︀ ê𝑧 ⋅ 𝑑S

(B.28)

where we applied integration by part and the divergence theorem.
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Plugging in the expression of 𝑢 given by Eq. B.27 into Eq. B.28, we have,

∐︀𝑢′⋃︀𝑉 ⋃︀𝑢̃︀𝑏,𝑎 = ∫ )︀𝐾̂𝑢′∗𝑏 (r)⌈︀𝑢𝑎(r)𝑑r

−∬ 𝑢′∗𝑏 (r)𝜇(r
′)

× ⌊︀𝑢′𝑎(r
′)
𝜕𝐾̂𝐺+

𝜕𝑧′
−
𝜕𝑢′𝑎(r

′)

𝜕𝑧′
𝐾̂𝐺+}︀𝑑𝑆′𝑑r

=∬ 𝜇(r)𝜇(r′){
𝜕𝑢′∗𝑏 (r)

𝜕𝑧

× )︀ − 𝑢′𝑎(r
′)
𝜕𝐺+

𝜕𝑧′
+𝐺+

𝜕𝑢′𝑎(r
′)

𝜕𝑧′
⌈︀

+ 𝑢′∗𝑏 (r))︀𝑢
′

𝑎(r
′)
𝜕2𝐺+

𝜕𝑧𝜕𝑧′
−
𝜕𝑢′𝑎(r

′)

𝜕𝑧′
𝜕𝐺+

𝜕𝑧
⌈︀}𝑑𝑆𝑑𝑆′

= − 4𝜇𝐿𝜇𝑅𝑡
∗

𝑏,𝑅𝑒
−𝑖𝑘𝑏,𝑅𝑧2+𝑖𝑘𝑎,𝐿𝑧

′

1𝐺+(𝑧2, 𝑧
′

1)𝑞𝑏,𝑅𝑞𝑎,𝐿

− 4𝜇2
𝐿𝑟

∗

𝑏,𝑅𝑒
𝑖𝑘𝑏,𝐿𝑧1+𝑖𝑘𝑎,𝐿𝑧

′

1𝐺+

1(𝑧1, 𝑧
′

1)𝑞𝑏,𝐿𝑞𝑎,𝐿

+ 4𝜇2
𝐿𝑟

∗

𝑏,𝑅𝑒
𝑖𝑘𝑏,𝐿𝑧1−𝑖𝑘𝑎,𝐿𝑧

′

1𝐺+

2(𝑧1, 𝑧
′

1)𝑞𝑏,𝐿𝑞𝑎,𝐿

(B.29)

where 𝐺+(𝑧1, 𝑧′1) = 𝐺+

1(𝑧1, 𝑧
′

1) + 𝐺+

2(𝑧1, 𝑧
′

1) and we do not need to know the exact

expression of 𝐺+

1 and 𝐺+

2 . Note that we have used the form of Green’s function in

its asymptotic limit in deriving the above expression. Denote 𝐿 the length of the

domain containing disorders. Then, 𝑧1, 𝑧′1 < 0 and 𝑧2, 𝑧′2 > 𝐿 are the boundary for

integration. Since the random mass disorders are localized at the interface at 𝑧 = 0,

we have 𝐿→ 0, such that we can set 𝑧1 = 𝑧′1 = 0− and 𝑧2 = 𝑧′2 = 0+.

Directly plugging in the general expression of 𝑢′ for unperturbed system given

by Eq. B.17 and 𝑢 for perturbed system given by Eq. B.8, we can obtain another

expression for matrix element ∐︀𝑢′⋃︀𝑉 ⋃︀𝑢̃︀𝑏,𝑎,

∐︀𝑢′⋃︀𝑉 ⋃︀𝑢̃︀𝑏,𝑎 =2𝑖𝜔𝑡∗𝑏,𝑅𝑡𝑏,𝑎
⌋︂
𝜌𝐿𝑣𝑎,𝐿𝜌𝑅𝑣𝑏,𝑅

+2𝑖𝜔 (𝑟∗𝑏,𝑅𝑟𝑏,𝑎

⌋︂
𝑣𝑎,𝐿

⌋︂
𝑣𝑏,𝐿

− 𝛿𝑏,𝑎)𝜌𝐿𝑣𝑏,𝐿
(B.30)

By equating Eq. B.29 to Eq. B.30, we have found the relationship between trans-
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mission matrix and Green’s function,

𝑡𝑏,𝑎 = 2𝑖𝜔𝐺+

𝑏,𝑎(0
+,0−)

⌋︂
𝜌𝐿𝜌𝑅𝑣𝑎,𝐿𝑣𝑏,𝑅

= 2𝑖𝜔𝜌
⌈︂
𝑣𝑅𝑣′𝐿𝐺

+

q∥,q
′

∥

(B.31)

Furthermore, using the boundary condition given by Eq. B.12a, we find that the

reflection matrix is related to Green’s function through,

𝑟𝑏,𝑎 = 2𝑖𝜔𝐺+

𝑏,𝑎(0
−,0−)𝜌𝐿

⌋︂
𝑣𝑎,𝐿𝑣𝑏,𝐿 − 𝛿𝑏𝑎.

= 2𝑖𝜔𝜌𝐿
⌈︂
𝑣𝐿𝑣′𝐿𝐺

+

q∥,q
′

∥

− 𝛿q∥,q′∥

(B.32)

B.1.3 The ensemble averaged Green’s function

From the series expansion of the transmission matrix in Eq. B.14 and relationship

between transmission matrix and Green’s function given by Eq. B.31, we can obtain

the following series for the ensemble averaged Green’s function,

∐︀𝐺+

q∥,q
′

∥

̃︀ = −𝑖
1

2𝜔𝜌𝑣′

⌈︂
𝑣′𝑅

⌋︂
𝑣𝑅

∞

∑
𝑁

̂︂(−𝑖Γ)𝑁]︁
q∥,q

′

∥

(B.33)

According to Eq. B.2, the ensemble average of matrix (−𝑖Γ)
𝑁 is obtained by integrat-

ing over all possible impurity positions,

∐︀(−𝑖Γ)
𝑁
̃︀ = ∫ ∏

𝑗

𝑑2r∥,𝑗

𝐴
(−𝑖Γ)

𝑁 (B.34)

In the weak perturbation limit, using Eq. B.3, Eq. B.7 and Eq. B.13a, we write down

the Green’s function in Eq. B.33 up to the second order,

∐︀𝐺+

q∥,q
′

∥

̃︀ =
⎛
⎜
⎝
𝐺+

0(q
′

∥
) +𝐺+2

0 (q′
∥
)
𝑉2

𝐴
∑
q′′
∥

𝐺+

0(q
′′

∥
)
⎞
⎟
⎠
𝛿q∥,q′∥ (B.35)

where 𝑉2 = ∐︀∑𝑖
𝑚2

𝑖

𝐴 𝜔4̃︀. The first-order term vanishes due to ensemble average ∐︀∑𝑖𝑚𝑖𝜔2̃︀ =

0. The diagonal form of Eq. B.35 implies that the ensemble average recovers the in-
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plane translational symmetry of the unperturbed Green’s function.

B.1.4 The transmission and reflection probability matrix

From Eq. B.10a, we find that the transmission probability matrix is related to the

product of retarded and advanced Green’s function,

∐︀𝑇q∥,q
′

∥

̃︀ = 4𝜔2𝜌2𝑣′𝐿𝑣𝑅∐︀𝐺
+

q∥,q
′

∥

𝐺−

q∥,q
′

∥

̃︀. (B.36)

The ensemble averaged 𝐺+

q∥,q
′

∥

𝐺−

q∥,q
′

∥

can be expressed by,

∐︀𝐺+

q∥,q
′

∥

𝐺−

q∥,q
′

∥

̃︀ = ⋃︀∐︀𝐺+

q∥,q
′

∥

̃︀⋃︀2

+ ∑
q′′
∥
,q′′′
∥

⋃︀∐︀𝐺+(q∥,q
′′

∥
)̃︀⋃︀2𝑊q′′

∥
,q′′′
∥

⋃︀∐︀𝐺+(q′′′
∥
,q′
∥
)̃︀⋃︀2

(B.37)

where the term 𝑊q′′
∥
,q′′′
∥

is called the reducible vertex function. To the lowest order,

the vertex function reads[158],

𝑊q′′
∥
,q′′′
∥

=
𝑉2

𝐴
(B.38)

From Eq. B.35 to Eq. B.38, we obtain the expression for the transmission probability

matrix,

∐︀𝑇q∥,q
′

∥

̃︀ = 𝛿q∥,q′∥
4𝜌𝐿𝜌𝑅𝑣𝐿𝑣𝑅

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

× ]︀1 − 2Re𝒢+𝜔−1𝑉2 (
1

𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅
){︀

+
4𝜔−2𝑉2

𝐴

𝜌𝑅𝑣𝑅

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

𝜌𝐿𝑣′𝐿
⋃︀𝜌𝐿𝑣′𝐿 + 𝜌𝑅𝑣′𝑅⋃︀

2

(B.39)

where 𝒢+ = (∑q′′
∥

𝑖𝐺+

0(q
′′

∥
)) ⇑𝐴 and the analytical expression for 𝒢+ can be found in

the next session. We identify that the diagonal term is responsible for specular trans-

mission, while the off-diagonal term is responsible for diffuse transmission. Similarly,

from Eq. B.10b, Eq. B.32 and Eq. B.35 , we derive that the reflection probability
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matrix writes,

∐︀𝑅q∥,q
′

∥

̃︀ = 𝛿q∥,q′∥
⋃︀𝜌𝐿𝑣𝐿 − 𝜌𝑅𝑣𝑅⋃︀

2

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

× ⌊︀1 − 4Re𝒢+𝜔−1𝑉2Re(
𝜌𝐿𝑣𝐿

𝜌2𝐿𝑣
2
𝐿 − 𝜌2𝑅𝑣

2
𝑅

)}︀

+
4𝜔−2𝑉2

𝐴

𝜌𝐿𝑣𝐿

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2

𝜌𝐿𝑣′𝐿
⋃︀𝜌𝐿𝑣′𝐿 + 𝜌𝑅𝑣′𝑅⋃︀

2 .

(B.40)

B.1.5 The analytical expression of 𝒢+

The term 𝒢+ in Eq. B.39 and Eq. B.40 can be written in terms of an integral over all

transverse wavevectors,

𝒢+

= ∫
𝑑2q∥

(2𝜋)2
1

⌉︂
𝜇𝐿(𝜌𝐿𝜔2 − 𝜇𝐿𝑞2∥) +

⌉︂
𝜇𝑅(𝜌𝑅𝜔2 − 𝜇𝑅𝑞2∥)

(B.41)

Introduce the ratio of bulk moduli as 𝑎 = 𝜌𝑅⇑𝜌𝐿 and 𝑏 = 𝜇𝑅⇑𝜇𝐿. Depending on the

bulk moduli and densities of two sides, the expression for the real part of 𝒢+ is as

follows. When (𝑏 − 𝑎)(1 − 𝑏2) > 0,

Re𝒢+ =
𝜔𝒢+0
1 − 𝑏2

[︀1 −
⌋︂
𝑎𝑏 +

}︂
𝑏(𝑏 − 𝑎)

1 − 𝑏2

×
⎛

⎝
atan

}︂
𝑎(1 − 𝑏2)

𝑏 − 𝑎
− atan

}︂
1 − 𝑏2

𝑏(𝑏 − 𝑎)

⎞

⎠
⌉︀

(B.42)

where 𝒢+0 = 1
2𝜋𝜇𝐿

⌉︂
𝜌𝐿
𝜇𝐿

and for Si, 𝒢+0 = 2.62 × 10−16s3⇑kg. When (𝑏 − 𝑎)(1 − 𝑏2) < 0,

Re𝒢+ =
𝜔𝒢+0
1 − 𝑏2

[︀1 −
⌋︂
𝑎𝑏 +

1

2

}︂
𝑏(𝑎 − 𝑏)

1 − 𝑏2

×
⎛
⎜
⎝

ln
⋃︀1 −

⌉︂
𝑏(𝑎−𝑏)
1−𝑏2 ⋃︀

1 +
⌉︂

𝑏(𝑎−𝑏)
1−𝑏2

− ln
⋃︀1 −

⌉︂
𝑎−𝑏

𝑎(1−𝑏2) ⋃︀

1 +
⌉︂

𝑎−𝑏
𝑎(1−𝑏2)

⎞
⎟
⎠
⌉︀

(B.43)
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When 𝑏 = 1 and 𝑎 ≠ 1,

Re𝒢+ =
𝜔𝒢+0

3

1 − 𝑎
3
2

1 − 𝑎
(B.44)

When 𝑎 = 𝑏,

Re𝒢+ =
𝜔𝒢+0
1 + 𝑏

(B.45)

B.1.6 The specular and diffuse transmittance/reflectance

The transmittance for a given initial state q∥ is defined by summing transition prob-

abilities to different final states q′
∥
,

𝑇𝐿→𝑅(q∥) = ∑
q′
∥

∐︀𝑇q′
∥
,q∥̃︀ (B.46)

where ∐︀𝑇q′
∥
,q∥̃︀ is the transmission probability matrix defined in Eq. B.39.

In the following, we will use direction Ω𝐿 = (𝜃𝐿, 𝜑𝐿) to denote a phonon state

q∥, where (q∥, 𝑞𝐿) =
𝜔
𝑐𝐿
(sin𝜃𝐿cos𝜑, sin𝜃𝐿sin𝜑, cos𝜃𝐿). Note that the group velocity is

parallel to the wavevector thus the angles for the group velocity and the wavevector

are the same. After integration, the transmittance in Eq. B.46 is given by,

𝑇𝐿→𝑅(Ω𝐿) = 𝑇s,𝐿→𝑅(Ω𝐿) + 𝑇d,𝐿→𝑅(Ω𝐿)

= 𝑇AMM(Ω𝐿)𝑝𝑇 (Ω𝐿) + 𝑇d,𝐿→𝑅(Ω𝐿)

(B.47)

The first term is the specular transmittance, which is the product of transmittance

from AMM[93, 91],

𝑇AMM(Ω𝐿) =
4𝜌𝐿𝜌𝑅𝑣𝐿𝑣𝑅

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2 (B.48)

and the specularity parameter for transmittance,

𝑝𝑇 (Ω𝐿) = 1 − 2Re𝒢+𝜔−1𝑉2 (
1

𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅
) (B.49)

The second term, diffuse transmittance, is given by Eq. 3.13 in Sec. 3.2.
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Similarly, the reflectance for a given incident state from the left side is given by,

𝑅𝐿→𝐿(Ω𝐿) = ∑
q′
∥

∐︀𝑅q′
∥
,q∥̃︀

= 𝑅s,𝐿→𝐿(Ω𝐿) +𝑅d,𝐿→𝐿(Ω𝐿)

= 𝑅AMM(Ω𝐿)𝑝𝑅(Ω𝐿) +𝑅d,𝐿→𝐿(Ω𝐿)

(B.50)

where ∐︀𝑅q′
∥
,q∥̃︀ is the reflection probability matrix defined in Eq. B.40. The reflectance

by AMM writes,

𝑅AMM(Ω𝐿) =
⋃︀𝜌𝐿𝑣𝐿 − 𝜌𝑅𝑣𝑅⋃︀

2

⋃︀𝜌𝐿𝑣𝐿 + 𝜌𝑅𝑣𝑅⋃︀
2 (B.51)

The specularity parameter for reflectance is given by,

𝑝𝑅(Ω𝐿) = 1 − 4Re𝒢+𝜔−1𝑉2Re(
𝜌𝐿𝑣𝐿

𝜌2𝐿𝑣
2
𝐿 − 𝜌2𝑅𝑣

2
𝑅

) (B.52)

And the diffuse reflectance 𝑅𝑑,𝐿→𝐿(Ω𝐿) is defined by Eq. 3.15. We want to stress that

the expressions in Eq. B.47 and Eq. B.50 add up to one in the current lowest-order

perturbation theory, which means our continuum model is a self-consistent theory.

However, this is not a guaranteed property at higher orders.

In the previous study of partially specular and partially specular interface scat-

tering by a disordered interface[159], the transmittance and reflectance are often

phenomenologically written as,

𝑇 (Ω) = 𝑝(Ω)𝑇AMM(Ω) + (1 − 𝑝(Ω))𝑇DMM(Ω) (B.53a)

𝑅(Ω) = 𝑝(Ω)𝑅AMM(Ω) + (1 − 𝑝(Ω))𝑅DMM(Ω) (B.53b)

where 𝑝 is the specularity parameter calculated by Ziman’s equation[160]. However, in

our continuum modeling, there are two specularity parameters, one for transmittance

(Eq. B.49), one for reflectance (eq. B.52) and they are generally not equal. The

necessity of two specularity parameters has been hypothesized by Li el al [161] and

our analytical model gives direct support for the hypothesis of two different specularity

parameters. What’s more, it is entirely possible to have 𝑝𝑅 in our model larger than
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Figure B-1: The transmittance and reflectance for a rough Si/Ge interface predicted
from the continuum model. (a) and (b): The specular and diffuse transmittance of
acoustic phonons at 4 THz in Si and Ge compared with AMM. (c) and (d): The
specular and diffuse reflectance of acoustic phonons at 4 THz in Si and Ge compared
with AMM. (e) and (f): The diffuse transmittance from one side and reflectance from
the other side of acoustic phonons at 4 THz. 𝜃 is the velocity angle of the incident
state.

one (this is also observed in AGF calculation presented in the supplementary material

in Ref. [76]), while the specularity parameter 𝑝 given by Ziman’s equation is bounded

by one. Thus, the specularity parameter is merely a correction factor and cannot be

interpreted as probability of being specularly scattered.

Similar to Eq. 3.20, we further compute the frequency-resolved average transmit-
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Figure B-2: (a)-(d) The frequency-resolved transmittance and reflectance from Si
side and Ge side from continuum modeling. (e) The transmission function Θ(𝜔) for
Si/Ge interface as a function of frequency. A multiplicity factor of three is multiplied
in the transmission function as there are three acoustic phonon branches. When the
frequency is much higher than 5 Thz, the lowest perturbation theory is no longer
valid, as the perturbed part becomes large.

tance by integrating over solid angle,

𝑇𝐿→𝑅(𝜔) = 2∫
𝜋⇑2

0
𝑑𝜃sin𝜃cos𝜃𝑇𝐿→𝑅(Ω𝐿) (B.54)

and the reflectance can be similarly computed. The energy-resolved transmission

function, which measures the number of conduction channels for interfacial thermal

transport, is obtained by,

Θ(𝜔) = 𝐴∫
𝑑2q∥

(2𝜋)2
𝑇𝐿→𝑅(𝜔,q∥)

= 2𝜋𝐴∫
𝑑2q∥𝑑𝑞𝐿

(2𝜋)3
𝑇𝐿→𝑅(Ω𝐿)𝑣𝐿𝛿(𝜔 − 𝑐𝐿

⌉︂
𝑞2
∥
+ 𝑞2𝐿)

= 𝜋𝐴𝐷𝐿(𝜔)𝑐𝐿∫
𝜋⇑2

0
𝑑𝜃sin𝜃cos𝜃𝑇𝐿→𝑅(Ω𝐿)

(B.55)

where 𝐷𝐿(𝜔) =
𝜔2

2𝜋2𝑐3𝐿
is the density of states of left side and sin𝜃 = ⋃︀q∥⋃︀𝑐𝐿⇑𝜔. The two-

probe interfacial thermal conductance per unit area is determined by the transmission
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function,

𝐺 =
1

2𝜋𝐴 ∫
∞

0
ℎ̵𝜔Θ(𝜔)

𝜕𝑓(𝜔,𝑇 )

𝜕𝑇
𝑑𝜔 (B.56)

where 𝑓(𝜔,𝑇 ) is the Bose-Einstein distribution function.

B.2 Numerical calculations

B.2.1 The interface scattering transition probability for a rough

Si/Ge interface

We apply the derived equations for transmittance and reflectance for a rough Si/Ge

interface along [001] direction. If we assume the atomic mixing is realized by swapping

Si and Ge atoms on two sides of interface, the variance of mass fluctuations is esti-

mated to be ∐︀𝑚2
𝑖 ̃︀ ≈ (𝑚Si −𝑚Ge)

2
= 1.985× 103u2. Thus, the parameter 𝑉2 = 𝑛∐︀𝑚2

𝑖 ̃︀𝜔
4,

where 𝑛 is the number of pairs of swapped Si and Ge atoms per unit area. We

choose 𝑛 = 2⇑𝑎2 in the following calculation, and 𝑎 = 5.527 Å is the lattice constant,

obtained by taking the average of Si’s and Ge’s lattice constants. The bulk moduli

of Si and Ge are 𝜇𝐿 = 95 GPa and 𝜇𝑅 = 77.2 GPa. The densities of Si and Ge are

𝜌𝐿 = 2.329 × 103 kg⇑m3 and 𝜌𝑅 = 5.323 × 103 kg⇑m3.

As shown in Fig. B-1, we find that the phonon transmittance of Si is smaller

compared with AMM. Although there are more transmission channels due to diffuse

scattering, the reduction of transmittance is mainly due to fewer specular transmission

channels, which are removed by interfacial disorders. In addition, we note that the

diffuse transmission from the Ge side opens new transmission channels above the

critical angle for total reflection. Furthermore, we find that the reflectance from the

Si side increases with the angle, similar to the trend of AMM. For reflectance from the

Ge side, the specular part is smaller than AMM. Due to large diffuse reflectance shown

in Fig. B-1 (e), the total reflection probability is eventually higher than predictions

of AMM below the critical angle and lower above the critical angle. In fact, from

the expression of Eq. B.39 and Eq. B.40, we find that the specular transmittance is

always reduced by disorders while the specular reflectance can either be enhanced or
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reduced depending on the sign of 𝜌𝐿𝑣𝐿 − 𝜌𝑅𝑣𝑅.

From Fig. B-1 (e) and (f), we observe that generally the diffuse transmittance from

one side is different from the diffuse reflectance from the other side.Furthermore, we

find that as frequency increases, the specular scattering probability decreases while

the diffuse scattering probability increases, as shown in Fig. B-2 (a)-(d). For the

transmittance from both sides, the reduction in the specular part is always larger than

the increment in the diffuse part, hence a reduced total transmittance. In contrast,

for reflectance, the increment in the diffuse part prevails over the reduction in the

specular part, causing a greater total reflectance. When we compare the phonon

transmission function for Si/Ge interface in Fig. B-2 (e), the interface disorders lead

to a smaller total transmission, thus a smaller thermal conductance. Note that when

𝜔 > 5 THz, the specular reflectance from Ge side will become negative, because the

perturbation is no longer a small quantity. From Eq. B.52, we see that the reduction

in the specularity parameter for reflectance 𝑝𝑅 varies drastically with frequency with

𝜔4 scaling. When 𝑝𝑅 ∼ 0, we have a critical frequency 𝜔 ∼ (
𝜇2𝐴
∐︀𝑚2

𝑖 ̃︀
)
1⇑4

, and our model

only works below this critical frequency.

To summarize, continuum modeling using perturbation theory to the lowest order

suggests that the diffuse scattering cannot make a phonon forget its origin, opposing

the picture of DMM. However, we want to point out limitations of the continuum

model of scalar phonons. First of all, the phonon mode conversion is not considered.

Secondly, the model is valid for low-frequency acoustic phonons thus at lifted tem-

peratures, where high-frequency phonons are playing an important role in interfacial

phonon transport, the model is no longer valid.
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Appendix C

The transient grating signals for

phase gratings

In this Appendix, we derive the expression for the TTG signals with phase grating

for layered systems.

C.1 The model

C.1.1 General solutions

The heat equation writes,

∇ ⋅ (𝜅∇𝑇 ) = 𝜌𝐶
𝜕𝑇

𝜕𝑡
, (C.1)

where 𝜅 is the thermal conductivity tensor, a rank-2 tensor in three-dimensional sys-

tem and 𝑇 is the temperature. Here, we assume that the thermal conductivity tensor

is not affected by elastic deformations. The equation of thermoelasticity writes[141],

(1 − 2𝜈)∇2u +∇(∇ ⋅ u) +F = 2 (1 + 𝜈)𝛼th∇𝑇 + 𝜌
𝜕2u

𝜕𝑡2
, (C.2)

where u is the displacement vector, 𝜈 is the Poisson’s ratio related to Lamé constants

through 𝜈 = 𝜆
2(𝜆+𝜇)

1, 𝛼th is the (volume) thermal expansion coefficient and F is the

1Some important related identities: 𝜆 = 𝜈𝐸
(1+𝜈)(1−2𝜈)

, 𝜇 = 𝐸
2(1+𝜈)

.
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applied force. For the case of TTG, there is no external force term. We further

assume the inertia term is negligible as it often evolves much faster than the heat

diffusion process. The simplified equation becomes,

(1 − 2𝜈)∇2u +∇(∇ ⋅ u) = 2 (1 + 𝜈)𝛼th∇𝑇. (C.3)

Considering the periodic geometry of the transient grating, we can write the temper-

ature and displacement in form of plane waves as,

𝑇 = 𝑇 (𝜔, 𝑞, 𝑧) 𝑒𝑖(𝜔𝑡+𝑞𝑥),

u = ũ (𝜔, 𝑞, 𝑧) 𝑒𝑖(𝜔𝑡+𝑞𝑥).
(C.4)

We immediately identify the solution to the heat equation,

𝑇 = 𝐴𝑒−𝜁𝑧 +𝐵𝑒𝜁𝑧, (C.5)

where 𝜁 =
⌈︂
(𝑞2𝜅𝑥 + 𝑖𝜌𝐶𝜔) ⇑𝜅𝑧 and 𝜅𝑥 and 𝜅𝑧 are the in-plane and out-of-plane thermal

conductivity.

As for the displacement, applying Helmholtz decomposition, we have

u = ∇Φ +∇ ×Ψ, (C.6)

where Ψ = (Ψ𝑥,Ψ𝑦,Ψ𝑧)
T is a vector potential. By construction, we can express the

scalar and vector potential as,

Φ = Φ̃ (𝜔, 𝑞, 𝑧) 𝑒𝑖(𝜔𝑡+𝑞𝑥),

Ψ = Ψ̃ (𝜔, 𝑞, 𝑧) 𝑒𝑖(𝜔𝑡+𝑞𝑥).
(C.7)

Plug Eq. C.7 into Eq. C.3, we have following identity,

∇(∇2𝜑 − 𝛾𝑇 ) = ∇ × (−𝜒∇2Ψ) (C.8)
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where 𝜒 = 1−2𝜈
2(1−𝜈) , 𝛾 = 1+𝜈

1−𝜈𝛼th and ∇2 is the vector Laplacian. We explicitly write down

the equations for different components of Ψ from Eq. C.8,

𝜕

𝜕𝑥
(
𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑧2
− 𝛾𝑇) = 𝜒

𝜕

𝜕𝑧
∇2Ψ𝑦,

𝜕

𝜕𝑥
(
𝜕2Ψ𝑥

𝜕𝑧2
) −

𝜕

𝜕𝑧
(
𝜕2Ψ𝑧

𝜕𝑥2
) = 0,

𝜕

𝜕𝑧
(
𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑧2
− 𝛾𝑇) = −𝑖𝑞𝜒∇2Ψ𝑦.

(C.9)

It is easy to show that Eq. C.9 lead to,

𝜕4Φ̃

𝜕𝑧4
− 2𝑞2

𝜕2Φ̃

𝜕𝑧2
+ 𝑞4Φ̃ = 𝜒(

𝜕2𝑇

𝜕𝑧2
− 𝑞2𝑇) . (C.10)

The special solution to Eq. C.10 is 𝛾𝐴
𝜁2−𝑞2 𝑒

−𝜁𝑧 +
𝛾𝐵

𝜁2−𝑞2 𝑒
𝜁𝑧. Thus, the solution to Eq. C.10

is given by,

Φ̃ =𝑀1𝑒
𝑞𝑧 +𝑀2𝑧𝑒

𝑞𝑧 +𝑁1𝑒
−𝑞𝑧 +𝑁2𝑧𝑒

−𝑞𝑧 −
𝛾𝐴

𝜁2 − 𝑞2
𝑒−𝜁𝑧 +

𝛾𝐵

𝜁2 − 𝑞2
𝑒𝜁𝑧. (C.11)

Without loss of generality, we choose a Coulomb gauge, where the vector potential

∇ ⋅Ψ = 0. With the knowledge of Φ, we obtain the y-component of Ψ,

Ψ𝑦 = ]︀
2𝑖

𝜒
(𝑀2𝑧𝑒

𝑞𝑧 −𝑁2𝑧𝑒
−𝑞𝑧) +𝐺𝑒−𝑞𝑧 +𝐻𝑒𝑞𝑧{︀ 𝑒𝑖(𝜔𝑡+𝑞𝑥) (C.12)

Thus, we are able to express the general solution for displacement, consistent with

Ref. [141]. One can also directly solve Eq. C.2,

𝜕2𝑢𝑥

𝜕𝑥2
+ 𝜒

𝜕2𝑢𝑥

𝜕𝑧2
+

𝑖𝑞

2 (1 − 𝜈)

𝜕𝑢𝑧

𝜕𝑧
= 𝛾

𝜕𝑇

𝜕𝑥

𝜕2𝑢𝑧

𝜕𝑧2
+ 𝜒

𝜕2𝑢𝑧

𝜕𝑥2
+

𝑖𝑞

2 (1 − 𝜈)

𝜕𝑢𝑥

𝜕𝑧
= 𝛾

𝜕𝑇

𝜕𝑧

(C.13)

Define 𝑥1 = 𝑢𝑥, 𝑥2 = 𝜕𝑢𝑥

𝜕𝑧 , 𝑦1 = 𝑢𝑧 and 𝑦2 = 𝜕𝑢𝑧

𝜕𝑧 . We can express the relationship
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between the displacement on the bottom and on the top of the first layer,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥′1

𝑥′2

𝑦′1

𝑦′2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

𝑞2

𝜒 0 0 −𝑖𝑞
1−2𝜈

0 0 0 1

0 −𝑖𝑞
2(1−𝜈) 𝜒𝑞2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥1

𝑥2

𝑦1

𝑦2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M ⋅ x (C.14)

The eigenvalues are −𝑞, 𝑞 and the eigenvectors are, v1 = ( 𝑖
𝑞 ,−𝑖,−

1
𝑞 ,1)

T
and v2 =

( 𝑖
𝑞 , 𝑖,

1
𝑞 ,1)

T
. Since the eigenvalue −𝑞 has two-fold degeneracy, the solution is x =

𝑧exp(−𝑞𝑧)v1 + exp(−𝑞𝑧)v′1, where v′1 is determined by (M − (−𝑞)I) ⋅ v′1 = v1. We can

also solve for v′2 similarly. As a result, we have v′1 = (
2𝑖(−1+2𝜈)

𝑞2 ,−−𝑖(−3+4𝜈)
𝑞 ,− 1

𝑞2 ,0)
T

and

v′2 = (
−2𝑖(−1+2𝜈)

𝑞2 ,−−𝑖(−3+4𝜈)
𝑞 ,− 1

𝑞2 ,0)
T
. Therefore, the solution reads, x = 𝑐1𝑒−𝑞𝑧v1 +

𝑐2 (𝑧𝑒−𝑞𝑧v1 + 𝑒−𝑞𝑧v′1) + 𝑑1𝑒𝑞𝑧v2 + 𝑑2 (𝑧𝑒𝑞𝑧v2 + 𝑒𝑞𝑧v′2). Finally, the displacements along

𝑥 and 𝑧 direction are,

𝑢𝑥 = −𝐶1𝑖𝑒
−𝑞𝑧 +𝐶2𝑖 (3 − 4𝜈 − 𝑞𝑧) 𝑒−𝑞𝑧 + 𝑖𝐶3𝑒

𝑞𝑧 +𝐶4𝑖 (3 − 4𝜈 + 𝑞𝑧) 𝑒𝑞𝑧

+
𝛾

𝜁2 − 𝑞2
)︀𝑖𝑞 (𝐴𝑒−𝜁𝑧 +𝐵𝑒𝜁𝑧)⌈︀ ,

𝑢𝑧 =𝐶1𝑒
−𝑞𝑧 +𝐶2𝑞𝑧𝑒

−𝑞𝑧 +𝐶3𝑒
𝑞𝑧 +𝐶4𝑞𝑧𝑒

𝑞𝑧

+
𝛾

𝜁2 − 𝑞2
)︀𝜁 (−𝐴𝑒−𝜁𝑧 +𝐵𝑒𝜁𝑧)⌈︀ .

(C.15)

C.1.2 Free surface boundary condition

The free surface suggests that 𝜎𝑧𝑧 = 𝜎𝑥𝑧 = 0. The strain read 𝜀𝛼𝛼 = 𝜕𝑢𝛼

𝜕𝛼 and 𝜀𝑥𝑧 =

1
2
(𝜕𝑢𝑥

𝜕𝑧 + 𝜕𝑢𝑧

𝜕𝑥
). The stress is determined by Duhamel-Neumann relations[162],

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗 − 𝛿𝑖𝑗(3𝜆 + 2𝜇)𝛼th𝑇. (C.16)

Specifically, we explicitly write down the two relevant strain components,

𝜎𝑧𝑧 = 𝑖𝑞𝜆𝑢𝑥 + (𝜆 + 2𝜇)
𝜕𝑢𝑧

𝜕𝑧
− (3𝜆 + 2𝜇)𝛼th𝑇,

𝜎𝑥𝑧 = 𝑖𝑞𝜇𝑢𝑧 + 𝜇
𝜕𝑢𝑥

𝜕𝑧
.

(C.17)
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The boundary condition for displacements writes,

𝜈
𝜕𝑢𝑥

𝜕𝑥
+ (1 − 𝜈)

𝜕𝑢𝑧

𝜕𝑧
− (1 + 𝜈)𝛼th𝑇 = 0,

𝜕𝑢𝑥

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑥
= 0.

(C.18)

Solving the above equations renders 𝑢𝑧(𝑧 = 0) = −2𝛼th𝐴(1+𝜈)
𝛽+𝑞 . To integrate the signal,

one needs following identity,

𝐼 = ∫
∞

−∞

𝑑𝑥𝑒𝑖𝑎𝑥
2

=

}︂
𝑖𝜋

𝑎
, 𝑎 > 0. (C.19)

When calculating the displacement gradient,

𝜕𝑢𝑧

𝜕𝑥
= −𝑄0𝑞0sin(𝑞0𝑥)∫ ℎ̃(𝜔)𝑢𝑧(𝑞0)𝑒

𝑖𝜔𝑡d𝜔, (C.20)

the following integral is involved,

∫

∞

−∞

𝑒𝑖𝜔𝑡d𝜔
⌋︂
𝑖𝜔 + 𝑐 (

⌋︂
𝑖𝜔 + 𝑐 + 𝑑)

(C.21)

where 𝑐 = 𝑞2𝜅𝑥 and 𝑑 = 𝑞
⌋︂
𝜅𝑧 are pure real number. One first split the integral into

two part 𝜔 ∈ (︀−∞,0⌋︀ and 𝜔 ∈ (︀0,+∞⌋︀, and denote 𝑖𝜔 + 𝑐 = 𝑢. For the second part,

𝐼2 = 𝑒−𝑐𝑡∫
𝑐+∞𝑖

𝑐

𝑒𝑢𝑡d𝑢⇑𝑖

(
⌋︂
𝑢 + 𝑑)

⌋︂
𝑢

(C.22)

Let 𝑚 =
⌋︂
𝑢 + 𝑑,

𝐼2 = 2𝑒−𝑐𝑡⇑𝑖∫

⌋︂

𝑐+𝑖∞+𝑑

⌋︂
𝑐+𝑑

𝑒(𝑚−𝑑)2𝑡d𝑚

𝑚 + 𝑑
(C.23)

Using Cauchy’s integral theorem, the integral is equivalent to,

𝐼2 = 2𝑒−𝑐𝑡∫
∞

0

𝑒−𝑦
2𝑡(𝑑 − 𝑖𝑦)d𝑦

𝑑2 + 𝑦2
(C.24)
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Similarly, the first part of the integral is,

𝐼1 = −2𝑒−𝑐𝑡∫
∞

0

𝑒−𝑦
2𝑡(𝑑 + 𝑖𝑦)d𝑦

𝑑2 + 𝑦2
(C.25)

Therefore, the integral can be expressed by,

𝐼 = 2𝑒−𝑐𝑡𝑑∫
∞

0

𝑒−𝑦
2𝑡

𝑑2 + 𝑦2
. (C.26)

Using the identity from Ref. [163], we have,

𝐼 = 𝜋𝑒−𝑐𝑡+𝑑
2𝑡erfc(𝑑

⌋︂
𝑡) = 𝜋𝑒−(𝜅𝑥−𝜅𝑧)𝑞2𝑡erfc(𝑞

}︂
𝜅𝑧𝑡

𝜌𝐶
) , (C.27)

where the complementary error function is defined by,

erfc(𝑧) =
2
⌋︂
𝜋
∫

∞

𝑧
𝑒−𝑡

2

d𝑡. (C.28)

The displacement at surface now can be expressed,

𝜕𝑢𝑧

𝜕𝑥
(𝑧 = 0) =

𝐸0(1 + 𝜈)𝛼th

𝜌𝐶
𝑞0sin(𝑞0𝑥)𝑒

−(𝜅𝑥−𝜅𝑧)𝑞2𝑡erfc(𝑞

}︂
𝜅𝑧𝑡

𝜌𝐶
) . (C.29)

C.1.3 Transfer matrix

In this section, we drop the ̃ for compactness. At given frequency 𝜔, the temperature

and heat flux of the 𝑛 the layer can be expressed,

⎛
⎜
⎝

𝑇𝑛

𝑄𝑛

⎞
⎟
⎠
=M𝑛N𝑛R𝑛−1 . . .R1M1N1 =

⎛
⎜
⎝

𝐴 𝐵

𝐶 𝐷

⎞
⎟
⎠

⎛
⎜
⎝

𝑇1

𝑄1

⎞
⎟
⎠
, (C.30)

For amplitude grating, above 2 × 2 transfer matrices can be used and compute the

signal. The matrices involved read,

M𝑖 =
⎛
⎜
⎝

𝑒𝛽𝐿𝑖 𝑒−𝛽𝐿𝑖

−(𝜅𝑧𝛽)𝑖𝑒𝛽𝐿𝑖 (𝜅𝑧𝛽)𝑖𝑒−𝛽𝐿𝑖

⎞
⎟
⎠
, N𝑖 =

⎛
⎜
⎝

1
2 − 1

2(𝜅𝑧𝛽)𝑖

1
2

1
2(𝜅𝑧𝛽)𝑖

⎞
⎟
⎠

andR𝑖 =
⎛
⎜
⎝

1 − 1
𝐺

0 1

⎞
⎟
⎠
. (C.31)

142



M𝑖N𝑖 =
⎛
⎜
⎝

cosh(𝛽𝐿𝑖) −
sinh(𝛽𝐿𝑖)

𝜅𝑧𝛽𝑖

−𝜅𝑧𝛽𝑖sinh(𝛽𝐿𝑖) cosh(𝛽𝐿𝑖)

⎞
⎟
⎠

(C.32)

where 𝛽 =
⌈︂
(𝑞2𝜅𝑥,𝑖 + 𝑖𝜌𝑖𝐶𝑖𝜔) ⇑𝜅𝑧,𝑖. The adiabatic boundary condition for bottom

layer and surface heating boundary condition 𝑄1 = 𝑄0 leads to, 𝐶𝑇1 + 𝐷𝑄0 = 0.

Equivalently, 𝑇1 = −
𝐷
𝐶𝑄0.

Consider all physical quantities in the system,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑇

𝑄

𝑢𝑥

𝑢𝑧

𝜎𝑥𝑧

𝜎𝑧𝑧

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑒−𝛽𝑧 𝑒𝛽𝑧 0 0 0 0

𝜅𝑧𝛽𝑒−𝛽𝑧 −𝜅𝑧𝛽𝑒𝛽𝑧 0 0 0 0

𝐺𝑖𝑞𝑒−𝛽𝑧 𝐺𝑖𝑞𝑒𝛽𝑧 −𝑖𝑒−𝑞𝑧 𝑖𝑒−𝑞𝑧𝐻−
(𝑧) 𝑖𝑒𝑞𝑧 𝑖𝑒𝑞𝑧𝐻+

(𝑧)

−𝐺𝛽𝑒−𝛽𝑧 𝐺𝛽𝑒𝛽𝑧 𝑒−𝑞𝑧 𝑞𝑧𝑒−𝑞𝑧 𝑒𝑞𝑧 𝑞𝑧𝑒𝑞𝑧

−2𝑖𝜇𝐺𝛽𝑞𝑒−𝛽𝑧 2𝑖𝜇𝐺𝛽𝑞𝑒𝛽𝑧 2𝑖𝜇𝑞𝑒−𝑞𝑧 2𝑖𝜇𝑞𝑒−𝑞𝑧𝐼−(𝑧) 2𝑖𝜇𝑞𝑒𝑞𝑧 2𝑖𝜇𝑞𝑒𝑞𝑧𝐼+(𝑧)

2𝜇𝐺𝑞2𝑒−𝛽𝑧 2𝜇𝐺𝑞2𝑒𝛽𝑧 −2𝜇𝑞𝑒−𝑞𝑧 −2𝜇𝑞𝑒−𝑞𝑧𝐽−(𝑧) 2𝜇𝑞𝑒𝑞𝑧 2𝜇𝑞𝑒𝑞𝑧𝐽+(𝑧)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝐴

𝐵

𝐶1

𝐶2

𝐶3

𝐶4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, (C.33)

where
𝐺 =

𝛾

𝛽2 − 𝑞2
,

𝐻−(𝑧) = 3 − 4𝜈 − 𝑞𝑧,

𝐻+(𝑧) = 3 − 4𝜈 + 𝑞𝑧,

𝐼−(𝑧) = −2 + 2𝜈 + 𝑞𝑧,

𝐼+(𝑧) = 2 − 2𝜈 + 𝑞𝑧,

𝐽−(𝑧) = 𝐼−(𝑧) + 1,

𝐽+(𝑧) = 𝐼+(𝑧) − 1.

Apparently, for an isotropic material where 𝜅𝑥 = 𝜅𝑧, the coefficient 𝐺 diverges. To

ensure the numerical accuracy, we need to rescale the variables by some constants.

Typically, temperature is around several 𝐾. Take the grating period to be around

10−5 m (typically ranging from 1𝜇m to 15𝜇m). The coefficient 𝛽 ∼ 105 m−1. The

heat flux is usually around 105 W⇑m2. Normally, the thermal expansion 𝛼 ∼ 10−5 K−1

thus 𝐺 ∼ 10−15 K−1m2. Accordingly, the displacement is around 10−10 m. If we take
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𝜇 ∼ 1010 Pa, the stress is around 105 Pa. The rescaled equation is,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇

𝑟1𝑄

𝑟2𝑢𝑥

𝑟3𝑢𝑧

𝑟4𝜎𝑥𝑧

𝑟5𝜎𝑧𝑧

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑟1𝑏1 𝑟1𝑏2 𝑏3 𝑏4 𝑏5 𝑏6

𝑟2𝑐1 𝑟2𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

𝑟3𝑑1 𝑟3𝑑2
𝑟3
𝑟2
𝑑3

𝑟3
𝑟2
𝑑4

𝑟3
𝑟2
𝑑5

𝑟3
𝑟2
𝑑6

𝑟4𝑒1 𝑟4𝑒2
𝑟4
𝑟2
𝑒3

𝑟4
𝑟2
𝑒4

𝑟4
𝑟2
𝑒5

𝑟4
𝑟2
𝑒6

𝑟5𝑓1 𝑟5𝑓2
𝑟5
𝑟2
𝑓3

𝑟5
𝑟2
𝑓4

𝑟5
𝑟2
𝑓5

𝑟5
𝑟2
𝑓6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐴

𝐵

𝑟2𝐶1

𝑟2𝐶2

𝑟2𝐶3

𝑟2𝐶4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.34)

where the letter and subscripts denote the row and column of unscaled matrix.

Denote the above 6 × 6 matrix M𝑖(𝑧), the vector of physical quantities p𝑖(𝑧) and

the vector of coefficients c𝑖 for 𝑖 th layer. When 𝑧 = 0, we can express the coefficients

c𝑖 = (︀M𝑖(𝑧 = 0)⌋︀
−1
p𝑖(0). Let’s denote N𝑖 = (︀M𝑖(𝑧 = 0)⌋︀

−1 and M𝑖 = M𝑖(𝑧 = 𝐿𝑖),

where 𝐿𝑖 the thickness of 𝑖 th layer. At the interface between the 𝑖 th layer and the

𝑖 + 1 th layer, the stress has to match such that 𝜎𝑧𝑧,𝑖 = 𝜎𝑧𝑧,𝑖+1 and 𝜎𝑥𝑧,𝑖 = 𝜎𝑥𝑧,𝑖+1. The

displacement needs to match as well, 𝑢𝑥,𝑖 = 𝑢𝑥,𝑖+1 and 𝑢𝑧,𝑖 = 𝑢𝑧,𝑖+1. We now write these

conditions in matrix form,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇

𝑟1𝑄

𝑟2𝑢𝑥

𝑟3𝑢𝑧

𝑟4𝜎𝑥𝑧

𝑟5𝜎𝑧𝑧

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
𝑖+1

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 1
𝑟1𝐺

0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇

𝑟1𝑄

𝑟2𝑢𝑥

𝑟3𝑢𝑧

𝑟4𝜎𝑥𝑧

𝑟5𝜎𝑧𝑧

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
𝑖

(C.35)

We denote the above matrix as 𝑅𝑖. At this moment, we can relate the physical

properties of top layer (1 st) to the bottom layer (n th) by,

p𝑛 =M𝑛N𝑛R𝑛−1 . . .R1M1N1p1 = Tp1. (C.36)

Choosing adiabatic boundary for bottom layer, 𝑄𝑛 = 0. If the bottom layer is thick

enough, we can set 𝑢𝑥,𝑛 = 𝑢𝑧,𝑛 = 0. For top layer, 𝑄1 = 𝑄0 and 𝜎𝑥𝑧,1 = 𝜎𝑧𝑧,1 = 0. We
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have,
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇

0

0

0

𝑟4𝜎𝑥𝑧

𝑟5𝜎𝑧𝑧

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
𝑛

= T

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇

𝑟1𝑄0

𝑟2𝑢𝑥

𝑟3𝑢𝑧

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
1

(C.37)

Introduce a vector,

x = (𝑇𝑛 𝑟4𝜎𝑥𝑧,𝑛 𝑟5𝜎𝑧𝑧,𝑛 𝑇1 𝑟2𝑢𝑥,1 𝑟3𝑢𝑧,1)
T

(C.38)

Convert this to a matrix equation problem Ax = b, where

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 𝑎1 𝑎3 𝑎4

0 0 0 𝑏1 𝑏3 𝑏4

0 0 0 𝑐1 𝑐3 𝑐4

0 0 0 𝑑1 𝑑3 𝑑4

0 −1 0 𝑒1 𝑒3 𝑒4

0 0 −1 𝑓1 𝑓3 𝑓4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(C.39)

and

b = −𝑟1𝑄0 (𝑎2 𝑏2 𝑐2 𝑑2 𝑒2 𝑓2)
T

, (C.40)

where letter indicates the row and number indicates the column of matrix T, for

example, 𝑐2 = 𝑇3,2. In practice, the rescaling constant can be chosen differently when

calculating the response at different frequency. Consequently, the analytical solution

for 𝑢𝑧 at the given 𝜔 is,

𝑢𝑧 = −𝑟1𝑄0
𝑏3𝑐2𝑑1 − 𝑏2𝑐3𝑑1 − 𝑏3𝑐1𝑑2 + 𝑏1𝑐3𝑑2 + 𝑏2𝑐1𝑑3 − 𝑏1𝑐2𝑑3
−𝑏4𝑐3𝑑1 + 𝑏3𝑐4𝑑1 + 𝑏4𝑐1𝑑3 − 𝑏1𝑐4𝑑3 − 𝑏3𝑐1𝑑4 + 𝑏1𝑐3𝑑4

. (C.41)

The time-dependent 𝑢𝑧(𝑡) can be obtained by applying the inverse Fourier transform

to 𝑢𝑧(𝜔).
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